Comparative performance of fully-automated and semi-automated artificial intelligence methods for the detection of clinically significant prostate cancer on MRI: a systematic review

Author:

Sushentsev NikitaORCID,Moreira Da Silva Nadia,Yeung Michael,Barrett Tristan,Sala Evis,Roberts Michael,Rundo Leonardo

Abstract

Abstract Objectives We systematically reviewed the current literature evaluating the ability of fully-automated deep learning (DL) and semi-automated traditional machine learning (TML) MRI-based artificial intelligence (AI) methods to differentiate clinically significant prostate cancer (csPCa) from indolent PCa (iPCa) and benign conditions. Methods We performed a computerised bibliographic search of studies indexed in MEDLINE/PubMed, arXiv, medRxiv, and bioRxiv between 1 January 2016 and 31 July 2021. Two reviewers performed the title/abstract and full-text screening. The remaining papers were screened by four reviewers using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) for DL studies and Radiomics Quality Score (RQS) for TML studies. Papers that fulfilled the pre-defined screening requirements underwent full CLAIM/RQS evaluation alongside the risk of bias assessment using QUADAS-2, both conducted by the same four reviewers. Standard measures of discrimination were extracted for the developed predictive models. Results 17/28 papers (five DL and twelve TML) passed the quality screening and were subject to a full CLAIM/RQS/QUADAS-2 assessment, which revealed a substantial study heterogeneity that precluded us from performing quantitative analysis as part of this review. The mean RQS of TML papers was 11/36, and a total of five papers had a high risk of bias. AUCs of DL and TML papers with low risk of bias ranged between 0.80–0.89 and 0.75–0.88, respectively. Conclusion We observed comparable performance of the two classes of AI methods and identified a number of common methodological limitations and biases that future studies will need to address to ensure the generalisability of the developed models.

Funder

National Institute of Health Research Cambridge Biomedical Research Centre

Cancer Research UK

Engineering and Physical Sciences Research Council Imaging Centre in Cambridge and Manchester

Cambridge Experimental Cancer Medicine Centre

The Mark Foundation for Cancer Research and Cancer Research UK Cambridge Centre

CRUK National Cancer Imaging Translational Accelerator

Wellcome Trust Innovator Award

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3