MRI texture-based machine learning models for the evaluation of renal function on different segmentations: a proof-of-concept study

Author:

Mo Xiaokai,Chen Wenbo,Chen Simin,Chen Zhuozhi,Guo Yuanshu,Chen Yulian,Wu Xuewei,Zhang Lu,Chen Qiuying,Jin Zhe,Li Minmin,Chen Luyan,You Jingjing,Xiong Zhiyuan,Zhang Bin,Zhang ShuixingORCID

Abstract

Abstract Background To develop and validate an MRI texture-based machine learning model for the noninvasive assessment of renal function. Methods A retrospective study of 174 diabetic patients (training cohort, n = 123; validation cohort, n = 51) who underwent renal MRI scans was included. They were assigned to normal function (n = 71), mild or moderate impairment (n = 69), and severe impairment groups (n = 34) according to renal function. Four methods of kidney segmentation on T2-weighted images (T2WI) were compared, including regions of interest covering all coronal slices (All-K), the largest coronal slices (LC-K), and subregions of the largest coronal slices (TLCO-K and PIZZA-K). The speeded-up robust features (SURF) and support vector machine (SVM) algorithms were used for texture feature extraction and model construction, respectively. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of models. Results The models based on LC-K and All-K achieved the nonsignificantly highest accuracy in the classification of renal function (all p values > 0.05). The optimal model yielded high performance in classifying the normal function, mild or moderate impairment, and severe impairment, with an area under the curve of 0.938 (95% confidence interval [CI] 0.935–0.940), 0.919 (95%CI 0.916–0.922), and 0.959 (95%CI 0.956–0.962) in the training cohorts, respectively, as well as 0.802 (95%CI 0.800–0.807), 0.852 (95%CI 0.846–0.857), and 0.863 (95%CI 0.857–0.887) in the validation cohorts, respectively. Conclusion We developed and internally validated an MRI-based machine-learning model that can accurately evaluate renal function. Once externally validated, this model has the potential to facilitate the monitoring of patients with impaired renal function.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3