Development and clinical utility analysis of a prostate zonal segmentation model on T2-weighted imaging: a multicenter study

Author:

Xu Lili,Zhang Gumuyang,Zhang Daming,Zhang Jiahui,Zhang Xiaoxiao,Bai Xin,Chen Li,Peng Qianyu,Jin Ru,Mao Li,Li Xiuli,Jin Zhengyu,Sun HaoORCID

Abstract

Abstract Objectives To automatically segment prostate central gland (CG) and peripheral zone (PZ) on T2-weighted imaging using deep learning and assess the model’s clinical utility by comparing it with a radiologist annotation and analyzing relevant influencing factors, especially the prostate zonal volume. Methods A 3D U-Net-based model was trained with 223 patients from one institution and tested using one internal testing group (n = 93) and two external testing datasets, including one public dataset (ETDpub, n = 141) and one private dataset from two centers (ETDpri, n = 59). The Dice similarity coefficients (DSCs), 95th Hausdorff distance (95HD), and average boundary distance (ABD) were calculated to evaluate the model’s performance and further compared with a junior radiologist’s performance in ETDpub. To investigate factors influencing the model performance, patients’ clinical characteristics, prostate morphology, and image parameters in ETDpri were collected and analyzed using beta regression. Results The DSCs in the internal testing group, ETDpub, and ETDpri were 0.909, 0.889, and 0.869 for CG, and 0.844, 0.755, and 0.764 for PZ, respectively. The mean 95HD and ABD were less than 7.0 and 1.3 for both zones. The U-Net model outperformed the junior radiologist, having a higher DSC (0.769 vs. 0.706) and higher intraclass correlation coefficient for volume estimation in PZ (0.836 vs. 0.668). CG volume and Magnetic Resonance (MR) vendor were significant influencing factors for CG and PZ segmentation. Conclusions The 3D U-Net model showed good performance for CG and PZ auto-segmentation in all the testing groups and outperformed the junior radiologist for PZ segmentation. The model performance was susceptible to prostate morphology and MR scanner parameters.

Funder

National High Level Hospital Clinical Research Funding

National Natural Science Foundation of China

CAMS Innovation Fund for Medical Sciences

2021 Key Clinical Specialty Program of Beijing

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3