Inter-observer agreement and image quality of model-based algorithm applied to the Coronary Artery Disease-Reporting and Data System score

Author:

Ippolito DavideORCID,Talei Franzesi Cammillo,Cangiotti Cecilia,Riva Luca,De Vito Andrea,Gandola Davide,Maino Cesare,Marra Paolo,Muscogiuri Giuseppe,Sironi Sandro

Abstract

Abstract Purpose To evaluate the inter-observer agreement of the CAD-RADS reporting system and compare image quality between model-based iterative reconstruction algorithm (MBIR) and standard iterative reconstruction algorithm (IR) of low-dose cardiac computed tomography angiography (CCTA). Methods One-hundred-sixty patients undergone a 256-slice MDCT scanner using low-dose CCTA combined with prospective ECG-gated techniques were enrolled. CCTA protocols were reconstructed with both MBIR and IR. Each study was evaluated by two readers using the CAD-RADS lexicon. Vessels enhancement, image noise, signal-to-noise (SNR), and contrast-to-noise (CNR) were computed in the axial native images, and inter-observer agreement was assessed. Radiation dose exposure as dose–length product (DLP) and effective dose were finally reported. Results The reliability analysis between the two readers was almost perfect for all CAD-RADS standard categories. Moreover, a significantly higher value of subjective qualitative analysis, SNR, and CNR in MBIR images compared to IR were found, due to a lower noise level (all p < 0.05). The mean DLP measured was 63.9 mGy*cm, and the mean effective dose was 0.9 mSv. Conclusion Inter-observer agreement of CAD-RADS was excellent confirming the importance, the feasibility, and the reproducibility of the CAD-RADS scoring system for CCTA. Moreover, lower noise and higher image quality with MBIR compared to IR were found. Implications for practice MBIR, by reducing noise and improving image quality, can help a better assessment of CAD-RADS, in comparison with standard IR algorithm.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3