Abstract
Abstract
Background
With a significant increase in utilisation of computed tomography (CT), inappropriate imaging is a significant concern. Manual justification audits of radiology referrals are time-consuming and require financial resources. We aimed to retrospectively audit justification of brain CT referrals by applying natural language processing and traditional machine learning (ML) techniques to predict their justification based on the audit outcomes.
Methods
Two human experts retrospectively analysed justification of 375 adult brain CT referrals performed in a tertiary referral hospital during the 2019 calendar year, using a cloud-based platform for structured referring. Cohen’s kappa was computed to measure inter-rater reliability. Referrals were represented as bag-of-words (BOW) and term frequency-inverse document frequency models. Text preprocessing techniques, including custom stop words (CSW) and spell correction (SC), were applied to the referral text. Logistic regression, random forest, and support vector machines (SVM) were used to predict the justification of referrals. A test set (300/75) was used to compute weighted accuracy, sensitivity, specificity, and the area under the curve (AUC).
Results
In total, 253 (67.5%) examinations were deemed justified, 75 (20.0%) as unjustified, and 47 (12.5%) as maybe justified. The agreement between the annotators was strong (κ = 0.835). The BOW + CSW + SC + SVM outperformed other binary models with a weighted accuracy of 92%, a sensitivity of 91%, a specificity of 93%, and an AUC of 0.948.
Conclusions
Traditional ML models can accurately predict justification of unstructured brain CT referrals. This offers potential for automated justification analysis of CT referrals in clinical departments.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference30 articles.
1. Shao Y-H, Tsai K, Kim S, Wu Y-J, Demissie K (2020) Exposure to tomographic scans and cancer risks. JNCI Cancer Spectr 4(1):pkz072. https://doi.org/10.1093/jncics/pkz072
2. Rehani MM, Yang K, Melick ER et al (2020) Patients undergoing recurrent CT scans: assessing the magnitude. Eur Radiol 30(4):1828–1836. https://doi.org/10.1007/s00330-019-06523-y
3. Gilligan P, Darcy L, Maguire G et al (2018) Irish national 2017 ct population and dose reference level survey: a novel gender and aged based survey using spreadsheet templates and clinical indications, EuroSafe imaging 2018. Austria Centre Vienna, 28 February–4 March. European Congress of Radiology, Vienna, pp 1–20. https://doi.org/10.1594/esi2018/ESI-0055
4. National Health Service England (2013) Diagnostic imaging dataset statistical release: annual experimental statistics. The Government Statistical Service, London. https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2012-13-data-2/. Accessed 23 June 2021
5. National Health Service England and National Health Service Improvement (2020) Diagnostic imaging dataset statistical release: provisional monthly statistics, September 2018 to September 2019. Performance Analysis Team, London. https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/01/Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2020-01-23.pdf. Accessed 23 June 2021
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献