Automated vetting of radiology referrals: exploring natural language processing and traditional machine learning approaches

Author:

Potočnik JakaORCID,Thomas Edel,Killeen Ronan,Foley Shane,Lawlor Aonghus,Stowe John

Abstract

Abstract Background With a significant increase in utilisation of computed tomography (CT), inappropriate imaging is a significant concern. Manual justification audits of radiology referrals are time-consuming and require financial resources. We aimed to retrospectively audit justification of brain CT referrals by applying natural language processing and traditional machine learning (ML) techniques to predict their justification based on the audit outcomes. Methods Two human experts retrospectively analysed justification of 375 adult brain CT referrals performed in a tertiary referral hospital during the 2019 calendar year, using a cloud-based platform for structured referring. Cohen’s kappa was computed to measure inter-rater reliability. Referrals were represented as bag-of-words (BOW) and term frequency-inverse document frequency models. Text preprocessing techniques, including custom stop words (CSW) and spell correction (SC), were applied to the referral text. Logistic regression, random forest, and support vector machines (SVM) were used to predict the justification of referrals. A test set (300/75) was used to compute weighted accuracy, sensitivity, specificity, and the area under the curve (AUC). Results In total, 253 (67.5%) examinations were deemed justified, 75 (20.0%) as unjustified, and 47 (12.5%) as maybe justified. The agreement between the annotators was strong (κ = 0.835). The BOW + CSW + SC + SVM outperformed other binary models with a weighted accuracy of 92%, a sensitivity of 91%, a specificity of 93%, and an AUC of 0.948. Conclusions Traditional ML models can accurately predict justification of unstructured brain CT referrals. This offers potential for automated justification analysis of CT referrals in clinical departments.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference30 articles.

1. Shao Y-H, Tsai K, Kim S, Wu Y-J, Demissie K (2020) Exposure to tomographic scans and cancer risks. JNCI Cancer Spectr 4(1):pkz072. https://doi.org/10.1093/jncics/pkz072

2. Rehani MM, Yang K, Melick ER et al (2020) Patients undergoing recurrent CT scans: assessing the magnitude. Eur Radiol 30(4):1828–1836. https://doi.org/10.1007/s00330-019-06523-y

3. Gilligan P, Darcy L, Maguire G et al (2018) Irish national 2017 ct population and dose reference level survey: a novel gender and aged based survey using spreadsheet templates and clinical indications, EuroSafe imaging 2018. Austria Centre Vienna, 28 February–4 March. European Congress of Radiology, Vienna, pp 1–20. https://doi.org/10.1594/esi2018/ESI-0055

4. National Health Service England (2013) Diagnostic imaging dataset statistical release: annual experimental statistics. The Government Statistical Service, London. https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-dataset/diagnostic-imaging-dataset-2012-13-data-2/. Accessed 23 June 2021

5. National Health Service England and National Health Service Improvement (2020) Diagnostic imaging dataset statistical release: provisional monthly statistics, September 2018 to September 2019. Performance Analysis Team, London. https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/01/Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2020-01-23.pdf. Accessed 23 June 2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3