Multi-modal artificial intelligence for the combination of automated 3D breast ultrasound and mammograms in a population of women with predominantly dense breasts

Author:

Tan Tao,Rodriguez-Ruiz Alejandro,Zhang Tianyu,Xu Lin,Beets-Tan Regina G. H.,Shen Yingzhao,Karssemeijer Nico,Xu Jun,Mann Ritse M.,Bao LingyunORCID

Abstract

Abstract Objectives To assess the stand-alone and combined performance of artificial intelligence (AI) detection systems for digital mammography (DM) and automated 3D breast ultrasound (ABUS) in detecting breast cancer in women with dense breasts. Methods 430 paired cases of DM and ABUS examinations from a Asian population with dense breasts were retrospectively collected. All cases were analyzed by two AI systems, one for DM exams and one for ABUS exams. A selected subset (n = 152) was read by four radiologists. The performance of AI systems was based on analysis of the area under the receiver operating characteristic curve (AUC). The maximum Youden’s index and its associated sensitivity and specificity were also reported for each AI systems. Detection performance of human readers in the subcohort of the reader study was measured in terms of sensitivity and specificity. Results The performance of the AI systems in a multi-modal setting was significantly better when the weights of AI-DM and AI-ABUS were 0.25 and 0.75, respectively, than each system individually in a single-modal setting (AUC-AI-Multimodal = 0.865; AUC-AI-DM = 0.832, p = 0.026; AUC-AI-ABUS = 0.841, p = 0.041). The maximum Youden’s index for AI-Multimodal was 0.707 (sensitivity = 79.4%, specificity = 91.2%). In the subcohort that underwent human reading, the panel of four readers achieved a sensitivity of 93.2% and specificity of 32.7%. AI-multimodal achieves superior or equal sensitivity as single human readers at the same specificity operating points on the ROC curve. Conclusion Multimodal (ABUS + DM) AI systems for detecting breast cancer in women with dense breasts are a potential solution for breast screening in radiologist-scarce regions.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3