MRI T2 mapping and shear wave elastography for identifying main pain generator in delayed-onset muscle soreness: muscle or fascia?

Author:

Fu Congcong,Xia Yu,Wang Bingshan,Zeng Qiang,Pan Shinong

Abstract

Abstract Introduction The main generator of delayed onset muscle soreness (DOMS) is still unknown. This study aimed to clarify the main generator of DOMS. Methods Twelve participants performed eccentric exercise (EE) on lower legs. MRI and ultrasound were used to assess changes of calf muscle and deep fascia before and after EE. These results were then compared to the muscle pain level. Results Compared to baseline, muscle pain peaked at 24–48 h after EE (downstairs 22.25 ± 6.196, 57.917 ± 9.298, F = 291.168, p < 0.01; resting 5.833 ± 1.899, 5.083 ± 2.429, F = 51.678, p < 0.01). Shear wave speed (SWE) of the deep fascia and T2 values of the gastrocnemius muscle and deep fascia all increased and peaked at 48 h after EE (1.960 ± 0.130, F = 22.293; 50.237 ± 2.963, F = 73.172; 66.328 ± 2.968, F = 231.719, respectively, p < 0.01). These measurements were positively correlated with DOMS (downstairs: r = 0.46, 0.76, 0.87, respectively, p < 0.001; resting: r = 0.42, 0.70, 0.77, respectively, p < 0.001). There was a significant positive correlation between SWE and T2 values of deep fascia (r = 0.54, p < 0.01). Conclusion DOMS is a common result of muscle and fascia injuries. Deep fascia edema and stiffness play a crucial role in DOMS, which can be effectively evaluated MR-T2 and SWE. Critical relevance statement Delayed-onset muscle soreness is a common result of muscle and deep fascia injuries, in which the edema and stiffness of the deep fascia play a crucial role. Both MRI and shear wave elastography can be effectively used to evaluate soft tissue injuries. Key points • The deep fascia is the major pain generator of delayed-onset muscle soreness. • There is a significant correlation between fascia injury and delayed-onset muscle soreness. • MRI and shear wave elastography are preferred methods for assessing fascia injuries. Graphical Abstract

Funder

National Natural Science Foundation of China

Basic Scientific Research Project, Department of Education of Liaoning province

Natural Science Foundation of Xiamen, China

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3