Enhancing prediction of supraspinatus/infraspinatus tendon complex injuries through integration of deep visual features and clinical information: a multicenter two-round assessment study

Author:

Alike Yamuhanmode,Li Cheng,Hou Jingyi,Long Yi,Zhang Jinming,Zhou Chuanhai,Zhang Zongda,Zhu Qi,Li Tao,Cao Shinan,Zhang Yuanhao,Wang Dan,Cheng Shuangqin,Yang Rui

Abstract

Abstract Objective Develop and evaluate an ensemble clinical machine learning–deep learning (CML-DL) model integrating deep visual features and clinical data to improve the prediction of supraspinatus/infraspinatus tendon complex (SITC) injuries. Methods Patients with suspected SITC injuries were retrospectively recruited from two hospitals, with clinical data and shoulder x-ray radiographs collected. An ensemble CML-DL model was developed for diagnosing normal or insignificant rotator cuff abnormality (NIRCA) and significant rotator cuff tear (SRCT). All patients suspected with SRCT were confirmed by arthroscopy examination. The model’s performance was evaluated using sensitivity, specificity, accuracy, and area under the curve (AUC) metrics, and a two-round assessment was conducted to authenticate its clinical applicability. Results A total of 974 patients were divided into three cohorts: the training cohort (n = 828), the internal validation cohort (n = 89), and the external validation cohort (n = 57). The CML-DL model, which integrates clinical and deep visual features, demonstrated superior performance compared to individual models of either type. The model’s sensitivity, specificity, accuracy, and area under curve (95% confidence interval) were 0.880, 0.812, 0.836, and 0.902 (0.858–0.947), respectively. The CML-DL model exhibited higher sensitivity and specificity compared to or on par with the physicians in all validation cohorts. Furthermore, the assistance of the ensemble CML-DL model resulted in a significant improvement in sensitivity for junior physicians in all validation cohorts, without any reduction in specificity. Conclusions The ensembled CML-DL model provides a solution to help physicians improve the diagnosis performance of SITC injury, especially for junior physicians with limited expertise. Critical relevance statement The ensembled clinical machine learning–deep learning (CML-DL) model integrating deep visual features and clinical data provides a superior performance in the diagnosis of supraspinatus/infraspinatus tendon complex (SITC) injuries, particularly for junior physicians with limited expertise. Key points 1. Integrating clinical and deep visual features improves diagnosing SITC injuries. 2. Ensemble CML-DL model validated for clinical use in two-round assessment. 3. Ensemble model boosts sensitivity in SITC injury diagnosis for junior physicians. Graphical Abstract

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3