Abstract
Abstract
Objectives
To explore whether multiparametric approach including blood oxygenation level-dependent MRI (BOLD-MRI) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can be applied in the assessment of renal function in children with chronic kidney disease (CKD).
Materials and methods
This prospective study included 74 children (CKD stage 1–3, 51; CKD stage 4–5, 12; healthy volunteers, 11) for renal MRI examinations including coronal T2WI, axial T1WI and T2WI, BOLD-MRI, and DWI sequences. We measured the renal cortex and medulla T2*, ADC, Dt, Dp, and fp values on BOLD and DWI images. Appropriate statistical methods were applied for comparing MRI-derived parameters among the three groups and calculating the correlation coefficients between MRI-derived parameters and clinical data. Receiver operating characteristic (ROC) curves were used to assess the diagnostic performance of MRI-derived parameters.
Results
There were significant differences in cortex T2*, ADC, Dt, fp and medulla T2*, ADC, Dt among the three groups. Cortex T2*, ADC, Dt, fp and medulla T2*, ADC, Dt had a trend: CKD stage 4–5 < CKD stage 1–3 < healthy volunteers. Cortex and medulla T2*, ADC, Dt were significantly correlated with eGFR, serum creatinine (Scr), cystatin C. In addition, cortex T2* and eGFR showed the highest correlation coefficient (r = 0.824, p < 0.001). Cortex Dt and medulla T2* were optimal parameters for differentiating healthy volunteers and CKD stage 1–3 or CKD stage 4–5 and CKD stage 1–3, respectively.
Conclusions
BOLD-MRI and IVIM-DWI might be used as a feasible method for noninvasive assessment of renal function in children with CKD.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging