Enhancing recurrence risk prediction for bladder cancer using multi-sequence MRI radiomics

Author:

Yang Guoqiang,Bai Jingjing,Hao Min,Zhang Lu,Fan Zhichang,Wang XiaochunORCID

Abstract

Abstract Objective We aimed to develop a radiomics-clinical nomogram using multi-sequence MRI to predict recurrence-free survival (RFS) in bladder cancer (BCa) patients and assess its superiority over clinical models. Methods A retrospective cohort of 229 BCa patients with preoperative multi-sequence MRI was divided into a training set (n = 160) and a validation set (n = 69). Radiomics features were extracted from T2-weighted images, diffusion-weighted imaging, apparent diffusion coefficient, and dynamic contrast-enhanced images. Effective features were identified using the least absolute shrinkage and selection operator (LASSO) method. Clinical risk factors were determined via univariate and multivariate Cox analysis, leading to the creation of a radiomics-clinical nomogram. Kaplan-Meier analysis and log-rank tests assessed the relationship between radiomics features and RFS. We calculated the net reclassification improvement (NRI) to evaluate the added value of the radiomics signature and used decision curve analysis (DCA) to assess the nomogram’s clinical validity. Results Radiomics features significantly correlated with RFS (log-rank p < 0.001) and were independent of clinical factors (p < 0.001). The combined model, incorporating radiomics features and clinical data, demonstrated the best prognostic value, with C-index values of 0.853 in the training set and 0.832 in the validation set. Compared to the clinical model, the radiomics-clinical nomogram exhibited superior calibration and classification (NRI: 0.6768, 95% CI: 0.5549-0.7987, p < 0.001). Conclusion The radiomics-clinical nomogram, based on multi-sequence MRI, effectively assesses the BCa recurrence risk. It outperforms both the radiomics model and the clinical model in predicting BCa recurrence risk. Critical relevance statement The radiomics-clinical nomogram, utilizing multi-sequence MRI, holds promise for predicting bladder cancer recurrence, enhancing individualized clinical treatment, and performing tumor surveillance. Key points • Radiomics plays a vital role in predicting bladder cancer recurrence. • Precise prediction of tumor recurrence risk is crucial for clinical management. • MRI-based radiomics models excel in predicting bladder cancer recurrence. Graphical Abstract

Funder

the National Natural Science Foundation of China

the Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province

the China International Medical Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3