Abstract
Abstract
Purpose
To generate and extend the evidence on the clinical validity of an artificial intelligence (AI) algorithm to detect acute pulmonary embolism (PE) on CT pulmonary angiography (CTPA) of patients suspected of PE and to evaluate the possibility of reducing the risk of missed findings in clinical practice with AI-assisted reporting.
Methods
Consecutive CTPA scan data of 3316 patients referred because of suspected PE between 24-2-2018 and 31-12-2020 were retrospectively analysed by a CE-certified and FDA-approved AI algorithm. The output of the AI was compared with the attending radiologists’ report. To define the reference standard, discordant findings were independently evaluated by two readers. In case of disagreement, an experienced cardiothoracic radiologist adjudicated.
Results
According to the reference standard, PE was present in 717 patients (21.6%). PE was missed by the AI in 23 patients, while the attending radiologist missed 60 PE. The AI detected 2 false positives and the attending radiologist 9. The sensitivity for the detection of PE by the AI algorithm was significantly higher compared to the radiology report (96.8% vs. 91.6%, p < 0.001). Specificity of the AI was also significantly higher (99.9% vs. 99.7%, p = 0.035). NPV and PPV of the AI were also significantly higher than the radiology report.
Conclusion
The AI algorithm showed a significantly higher diagnostic accuracy for the detection of PE on CTPA compared to the report of the attending radiologist. This finding indicates that missed positive findings could be prevented with the implementation of AI-assisted reporting in daily clinical practice.
Critical relevance statement
Missed positive findings on CTPA of patients suspected of pulmonary embolism can be prevented with the implementation of AI-assisted care.
Key points
The AI algorithm showed excellent diagnostic accuracy detecting PE on CTPA.
Accuracy of the AI was significantly higher compared to the attending radiologist.
Highest diagnostic accuracy can likely be achieved by radiologists supported by AI.
Our results indicate that implementation of AI-assisted reporting could reduce the number of missed positive findings.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献