Feasibility of utilizing ultra-low-dose contrast medium for pancreatic artery depiction using the combination of advanced virtual monoenergetic imaging and high-concentration contrast medium: an intra-patient study

Author:

Li Juan,Wang Yu-hong,Zheng Fu-ling,Chen Xin-yue,Lin Yun,Zhu Cai-rong,Wu Yi-fan,Xu Qiang,Jin Zheng-yu,Xue Hua-danORCID

Abstract

Abstract Objectives The least amount of contrast medium (CM) should be used under the premise of adequate diagnosis. The purpose of this study is to evaluate the feasibility of utilizing ultra-low-dose (224 mgI/kg) CM for pancreatic artery depiction using the combination of advanced virtual monoenergetic imaging (VMI+) and high-concentration (400 mgI/mL) CM. Materials and methods 41 patients who underwent both normal dose CM (ND-CM, 320 mgI/kg) and low dose CM (LD-CM, 224 mgI/kg) thoracoabdominal enhanced CT for tumor follow-up were prospectively included. The VMI+ at the energy level of 40-kev for LD-CM images was reconstructed. CT attenuation, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs) of the abdominal artery, celiac artery, and superior mesenteric artery (SMA) and qualitative scores of pancreatic arteries depiction were recorded and compared among the three groups (ND-CM, LD-CM, and VMI+ LD-CM images). ANOVA and Friedman tests were used for statistical analysis. Results All quantitative and qualitative parameters on LD-CM images were lower than that on ND-CM images (all p < 0.01). There were no significant differences of all arteries’ qualitative scores between ND-CM and VMI+ LD-CM images (all p > 0.05). VMI+ LD-CM images had the highest mean CT and CNR values of all arteries (all p < 0.0001). The CM volume was 52.6 ± 9.4 mL for the ND-CM group and 37.0 ± 6.7 mL for the LD-CM group. Conclusion Ultra-low-dose CM (224 mgI/kg) was feasible for depicting pancreatic arteries. Inferior angiographic image quality could be successfully compensated by VMI+ and high-concentration CM.

Funder

National Key R&D Program of China

Sky imaging research fund of Chinese International Medical Foundation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3