A virtual biopsy study of microsatellite instability in gastric cancer based on deep learning radiomics

Author:

Jiang Zinian,Xie Wentao,Zhou Xiaoming,Pan Wenjun,Jiang Sheng,Zhang Xianxiang,Zhang Maoshen,Zhang Zhenqi,Lu Yun,Wang DongshengORCID

Abstract

Abstract Objectives This study aims to develop and validate a virtual biopsy model to predict microsatellite instability (MSI) status in preoperative gastric cancer (GC) patients based on clinical information and the radiomics of deep learning algorithms. Methods A total of 223 GC patients with MSI status detected by postoperative immunohistochemical staining (IHC) were retrospectively recruited and randomly assigned to the training (n = 167) and testing (n = 56) sets in a 3:1 ratio. In the training set, 982 high-throughput radiomic features were extracted from preoperative abdominal dynamic contrast-enhanced CT (CECT) and screened. According to the deep learning multilayer perceptron (MLP), 15 optimal features were optimized to establish the radiomic feature score (Rad-score), and LASSO regression was used to screen out clinically independent predictors. Based on logistic regression, the Rad-score and clinically independent predictors were integrated to build the clinical radiomics model and visualized as a nomogram and independently verified in the testing set. The performance and clinical applicability of hybrid model in identifying MSI status were evaluated by the area under the receiver operating characteristic (AUC) curve, calibration curve, and decision curve (DCA). Results The AUCs of the clinical image model in training set and testing set were 0.883 [95% CI: 0.822–0.945] and 0.802 [95% CI: 0.666–0.937], respectively. This hybrid model showed good consistency in the calibration curve and clinical applicability in the DCA curve, respectively. Conclusions Using preoperative imaging and clinical information, we developed a deep-learning-based radiomics model for the non-invasive evaluation of MSI in GC patients. This model maybe can potentially support clinical treatment decision making for GC patients. Graphical abstract

Funder

Beijing Bethune Charitable Foundation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3