Interventional radiology and artificial intelligence in radiology: Is it time to enhance the vision of our medical students?

Author:

Auloge PierreORCID,Garnon Julien,Robinson Joey Marie,Dbouk Sarah,Sibilia Jean,Braun Marc,Vanpee Dominique,Koch Guillaume,Cazzato Roberto Luigi,Gangi Afshin

Abstract

Abstract Objectives To assess awareness and knowledge of Interventional Radiology (IR) in a large population of medical students in 2019. Methods An anonymous survey was distributed electronically to 9546 medical students from first to sixth year at three European medical schools. The survey contained 14 questions, including two general questions on diagnostic radiology (DR) and artificial intelligence (AI), and 11 on IR. Responses were analyzed for all students and compared between preclinical (PCs) (first to third year) and clinical phase (Cs) (fourth to sixth year) of medical school. Of 9546 students, 1459 students (15.3%) answered the survey. Results On DR questions, 34.8% answered that AI is a threat for radiologists (PCs: 246/725 (33.9%); Cs: 248/734 (36%)) and 91.1% thought that radiology has a future (PCs: 668/725 (92.1%); Cs: 657/734 (89.5%)). On IR questions, 80.8% (1179/1459) students had already heard of IR; 75.7% (1104/1459) stated that their knowledge of IR wasn’t as good as the other specialties and 80% would like more lectures on IR. Finally, 24.2% (353/1459) indicated an interest in a career in IR with a majority of women in preclinical phase, but this trend reverses in clinical phase. Conclusions Development of new technology supporting advances in artificial intelligence will likely continue to change the landscape of radiology; however, medical students remain confident in the need for specialty-trained human physicians in the future of radiology as a clinical practice. A large majority of medical students would like more information about IR in their medical curriculum; almost a quarter of students would be interested in a career in IR.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3