Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI

Author:

Liu HongORCID,Jiao Menglei,Yuan Yuan,Ouyang Hanqiang,Liu Jianfang,Li Yuan,Wang Chunjie,Lang Ning,Qian Yueliang,Jiang Liang,Yuan Huishu,Wang Xiangdong

Abstract

Abstract Background The application of deep learning has allowed significant progress in medical imaging. However, few studies have focused on the diagnosis of benign and malignant spinal tumors using medical imaging and age information at the patient level. This study proposes a multi-model weighted fusion framework (WFF) for benign and malignant diagnosis of spinal tumors based on magnetic resonance imaging (MRI) images and age information. Methods The proposed WFF included a tumor detection model, sequence classification model, and age information statistic module based on sagittal MRI sequences obtained from 585 patients with spinal tumors (270 benign, 315 malignant) between January 2006 and December 2019 from the cooperative hospital. The experimental results of the WFF were compared with those of one radiologist (D1) and two spine surgeons (D2 and D3). Results In the case of reference age information, the accuracy (ACC) (0.821) of WFF was higher than three doctors’ ACC (D1: 0.686; D2: 0.736; D3: 0.636). Without age information, the ACC (0.800) of the WFF was also higher than that of the three doctors (D1: 0.750; D2: 0.664; D3:0.614). Conclusions The proposed WFF is effective in the diagnosis of benign and malignant spinal tumors with complex histological types on MRI.

Funder

National Natural Science Foundation of China

Capital's Funds for Health Improvement and Research

Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3