Abstract
Abstract
Background
Prostate segmentation is an essential step in computer-aided detection and diagnosis systems for prostate cancer. Deep learning (DL)-based methods provide good performance for prostate gland and zones segmentation, but little is known about the impact of manual segmentation (that is, label) selection on their performance. In this work, we investigated these effects by obtaining two different expert label-sets for the PROSTATEx I challenge training dataset (n = 198) and using them, in addition to an in-house dataset (n = 233), to assess the effect on segmentation performance. The automatic segmentation method we used was nnU-Net.
Results
The selection of training/testing label-set had a significant (p < 0.001) impact on model performance. Furthermore, it was found that model performance was significantly (p < 0.001) higher when the model was trained and tested with the same label-set. Moreover, the results showed that agreement between automatic segmentations was significantly (p < 0.0001) higher than agreement between manual segmentations and that the models were able to outperform the human label-sets used to train them.
Conclusions
We investigated the impact of label-set selection on the performance of a DL-based prostate segmentation model. We found that the use of different sets of manual prostate gland and zone segmentations has a measurable impact on model performance. Nevertheless, DL-based segmentation appeared to have a greater inter-reader agreement than manual segmentation. More thought should be given to the label-set, with a focus on multicenter manual segmentation and agreement on common procedures.
Critical relevance statement
Label-set selection significantly impacts the performance of a deep learning-based prostate segmentation model. Models using different label-set showed higher agreement than manual segmentations.
Key points
• Label-set selection has a significant impact on the performance of automatic segmentation models.
• Deep learning-based models demonstrated true learning rather than simply mimicking the label-set.
• Automatic segmentation appears to have a greater inter-reader agreement than manual segmentation.
Graphical Abstract
Funder
Norges Forskningsråd
Norwegian Cancer Society and Prostatakreftforeningen
Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology
Erasmus+
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献