Role of breath-hold lung PET in stage IA pulmonary adenocarcinoma

Author:

Cheng Zhaoping,Chen Li,Wang Ximing,Wang Ying,Zhao Minjie,Zan Keyu,Liu Wen,Cui Xiao,Chai Leiying,Ge Min,Li Kun,Duan YanhuaORCID

Abstract

Abstract Background Respiratory motion during PET acquisition may result in image blurring and resolution loss, reduced measurement of radiotracer uptake, and consequently, inaccurate lesion quantification and description. With the introduction of the total-body PET system, short-time PET acquisition is feasible due to its high sensitivity and spatial resolution. The purpose of this study was to evaluate the additional value of 20-s breath-hold (BH) lung PET in patients with stage IA pulmonary adenocarcinoma. Methods Forty-seven patients with confirmed stage IA pulmonary adenocarcinoma were enrolled in this retrospective study. All patients underwent a 300-s FB whole-body PET, followed by a BH lung PET. The SUVmax, TBR of the lesions and the percentage difference in nodule SUVmax (%ΔSUVmax) and TBR (%ΔTBR) between the two acquisitions was also calculated. The lesions were further divided by distance from pleura for subgroup analysis. The lesion detectability on PET images was the percentage of FDG-positive lesions. Results Among 47 patients, the BH lung PET images identified all lung nodules, and there was a significant difference in overall nodule SUVmax and TBR between BH PET and FB PET (both p < 0.01). The %ΔSUVmax and %ΔTBR were significantly higher in nodules adjacent to pleura (≤ 10 mm in distance) than those away from pleura (both p < 0.05). The lesion detectability of BH lung PET was significantly higher than that of FB PET (p < 0.01). Conclusion BH PET acquisition is a practical way to minimize motion artifacts in PET which has the potential to improve lesion detection for stage IA pulmonary adenocarcinoma. Critical relevance statement BH PET acquisition is a practical way to minimize motion artifacts in PET which has the potential to improve lesion detection for stage IA pulmonary adenocarcinoma. Graphical Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Shandong First Medical University

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3