Shear wave and strain sonoelastography for the evaluation of the Achilles tendon during isometric contractions

Author:

Schneebeli AlessandroORCID,Fiorina IlariaORCID,Bortolotto ChandraORCID,Barbero MarcoORCID,Falla DeborahORCID,Cescon CorradoORCID,Raciti Maria VittoriaORCID,Tarantino Francesco,Preda LorenzoORCID

Abstract

Abstract Objectives Changes in mechanical loading as well as pathology can modify the Achilles tendon mechanical properties and therefore detection of these changes is relevant for the diagnosis and management of Achilles tendinopathy. The aim of this study was to evaluate strain and shear wave sonoelastography for their ability to detect changes in the Achilles tendon mechanical properties during a series of isometric contractions. Methods Longitudinal sonoelastography images of the Achilles tendon were acquired from 20 healthy participants using four different ultrasound devices; two implementing strain sonoelastography technology (SE1, SE2) and two, shear wave elastography technology (SWE1, SWE2). Results SE1 measured a decreasing strain ratio (tendon become harder) during the different contraction levels from 1.51 (0.92) to 0.33 (0.16) whereas SE2 mesaured a decreasing strain ratio from 1.08 (0.76) to 0.50 (0.32). SWE1 measured decreasing tendon stiffness during contractions of increasing intensity from 33.40 (19.61) to 16.19 (2.68) whereas SWE2 revealed increasing tendon stiffness between the first two contraction levels from 428.65 (131.5) kPa to 487.9 (121.5) kPa followed by decreasing stiffness for the higher contraction levels from 459.35 (113.48) kPa to 293.5 (91.18) kPa. Conclusions Strain elastography used with a reference material was able to detect elasticity changes between the different contraction levels whereas shear wave elastography was less able to detect changes in Achilles tendon stiffness when under load. Inconsistent results between the two technologies should be further investigated.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3