Author:
Uddin Md Mesbah,Zhou Ying,Bick Alexander G.,Burugula Bala Bharathi,Jaiswal Siddhartha,Desai Pinkal,Honigberg Michael C.,Love Shelly-Ann,Barac Ana,Hayden Kathleen M.,Manson JoAnn E.,Whitsel Eric A.,Kooperberg Charles,Natarajan Pradeep,Reiner Alexander P.,Kitzman Jacob O.
Abstract
Abstract
Background
Clonal hematopoiesis of indeterminate potential (CHIP), the age-related expansion of mutant hematopoietic stem cells, confers risk for multiple diseases of aging including hematologic cancer and cardiovascular disease. Whole-exome or genome sequencing can detect CHIP, but due to those assays’ high cost, most population studies have been cross-sectional, sequencing only a single timepoint per individual.
Results
We developed and validated a cost-effective single molecule molecular inversion probe sequencing (smMIPS) assay for detecting CHIP, targeting the 11 most frequently mutated genes in CHIP along with 4 recurrent mutational hotspots. We sequenced 548 multi-timepoint samples collected from 182 participants in the Women’s Health Initiative cohort, across a median span of 16 years. We detected 178 driver mutations reaching variant allele frequency ≥ 2% in at least one timepoint, many of which were detectable well below this threshold at earlier timepoints. The majority of clonal mutations (52.1%) expanded over time (with a median doubling period of 7.43 years), with the others remaining static or decreasing in size in the absence of any cytotoxic therapy.
Conclusions
Targeted smMIPS sequencing can sensitively measure clonal dynamics in CHIP. Mutations that reached the conventional threshold for CHIP (2% frequency) tended to continue growing, indicating that after CHIP is acquired, it is generally not lost. The ability to cost-effectively profile CHIP longitudinally will enable future studies to investigate why some CHIP clones expand, and how their dynamics relate to health outcomes at a biobank scale.
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献