Sex differences in inflammation in the hippocampus and amygdala across the lifespan in rats: associations with cognitive bias

Author:

Hodges Travis E.,Lieblich Stephanie E.,Rechlin Rebecca K.,Galea Liisa A. M.

Abstract

Abstract Background Cognitive symptoms of major depressive disorder, such as negative cognitive bias, are more prevalent in women than in men. Cognitive bias involves pattern separation which requires hippocampal neurogenesis and is modulated by inflammation in the brain. Previously, we found sex differences in the activation of the amygdala and the hippocampus in response to negative cognitive bias in rats that varied with age. Given the association of cognitive bias to neurogenesis and inflammation, we examined associations between cognitive bias, neurogenesis in the hippocampus, and cytokine and chemokine levels in the ventral hippocampus (HPC) and basolateral amygdala (BLA) of male and female rats across the lifespan. Results After cognitive bias testing, males had more IFN-γ, IL-1β, IL-4, IL-5, and IL-10 in the ventral HPC than females in adolescence. In young adulthood, females had more IFN-γ, IL-1β, IL-6, and IL-10 in the BLA than males. Middle-aged rats had more IL-13, TNF-α, and CXCL1 in both regions than younger groups. Adolescent male rats had higher hippocampal neurogenesis than adolescent females after cognitive bias testing and young rats that underwent cognitive bias testing had higher levels of hippocampal neurogenesis than controls. Neurogenesis in the dorsal hippocampus was negatively associated with negative cognitive bias in young adult males. Conclusions Overall, the association between negative cognitive bias, hippocampal neurogenesis, and inflammation in the brain differs by age and sex. Hippocampal neurogenesis and inflammation may play greater role in the cognitive bias of young males compared to a greater role of BLA inflammation in adult females. These findings lay the groundwork for the discovery of sex-specific novel therapeutics that target region-specific inflammation in the brain and hippocampal neurogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Aging,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3