Bifidobacterium bifidum and Lactobacillus paracasei alleviate sarcopenia and cognitive impairment in aged mice by regulating gut microbiota-mediated AKT, NF-κB, and FOXO3a signaling pathways

Author:

Baek Ji-Su,Shin Yoon-Jung,Ma Xiaoyang,Park Hee-Seo,Hwang Yun-Ha,Kim Dong-Hyun

Abstract

AbstractSarcopenia is closely associated with gut dysbiosis. Probiotics alleviate gut dysbiosis. Therefore, we selected probiotics Lactobacillus paracasei P62 (Lp) and Bifidobacterium bifidum P61 (Bb), which suppressed muscle RING-finger protein-1 (MuRF1) expression and NF-κB activation in C2C12 cells, and examined their effects on muscle mass loss and dysfunction in aged mice. Oral administration of Lp, Bb, or their mix (LB) increased grip strength and treadmill running distance and time. They significantly increased muscle weight in aged mice. They also increased AKT activation, PGC1α, SIRT1, and myosin heavy chain (MyHC) expression, MyHC-positive cell population, and cell size in the gastrocnemius (GA) muscle, while FOXO3a and NF-κB activation, MuRF1, muscle atrophy F-box, and p16 expression, and NF-κB+CD11c+ cell population decreased. Furthermore, they reduced cognitive impairment-like behavior, IL-6 expression, FOXO3a activation, and NF-κB-positive cell population in the hippocampus, GA, and colon, while hippocampal brain-derived neurotropic factor expression increased. They shifted gut microbiota composition in aged mice: they increased Akkermansiaceae and Bacteroidaceae populations, which were positively correlated with total muscle weight and MyHC expression, and decreased Odoribacteraceae and Deferribacteriaceae populations, which were positively correlated with MuRF1 and IL-6 expression. LB alleviated sarcopenia- and cognitive impairment-like symptoms more potently than Lp or Bb alone. Based on these findings, probiotics, particularly Lp, Bb, and LB, can alleviate aging-dependent sarcopenia and cognitive impairment by regulating gut microbiota-mediated AKT, NF-κB, and/or FOXO3a signaling pathways.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Aging,Immunology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3