Real-time sensing of neurotransmitters by functionalized nanopores embedded in a single live cell

Author:

Zhang Xialin,Dou Linqin,Zhang Ming,Wang Yu,Jiang Xin,Li Xinqiong,Wei Long,Chen Yuejia,Zhou Cuisong,Geng JiaORCID

Abstract

AbstractInterface between neuron cells and biomaterials is the key to real-time sensing, transmitting and manipulating of neuron activities, which are the long-term pursue of scientists and gain intense research focus recently. It is of great interest to develop a sensor with exquisite sensitivity and excellent selectivity for real-time monitoring neurotransmitters transport through single live cell. Sensing techniques including electrode-based methods, optogenetics, and nanowire cell penetration systems have been developed to monitor the neuron activities. However, their biocompatibilities remain a challenge. Protein nanopores with membrane compatibility and lumen tunability provide real-time, single-molecule sensitivities for biosensing of DNA, RNA, peptides and small molecules. In this study, an engineered protein nanopore MspA (Mycobacterium smegmatis porin A) through site-directed mutation with histidine selectively bind with Cu2+ in its internal lumen. Chelation of neurotransmitters such as L-glutamate (L-Glu), dopamine (DA) and norepinephrine (NE) with the Cu2+ creates specific current signals, showing different transient current blockade and dwell time in single channel electrophysiological recording. Furthermore, the functionalized M2MspA-N91H nanopores have been embedded in live HEK293T cell membrane for real-time, in situ monitoring of extracellular L-glutamate translocating through the nanopore. This biomimetic neurotransmitter nanopore has provided a new platform for future development of neuron sensors, drug carrier and artificial synapse.

Funder

Science & Technology Department of Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3