Identifying drivers of breast cancer metastasis in progressively invasive subpopulations of zebrafish-xenografted MDA-MB-231

Author:

Xiao Jerry,McGill Joseph R.,Nasir Apsra,Lekan Alexander,Johnson Bailey,Wilkins Devan J.,Pearson Gray W.,Tanner Kandice,Goodarzi Hani,Glasgow Eric,Schlegel Richard,Agarwal SeemaORCID

Abstract

AbstractCancer metastasis is the primary cause of the high mortality rate among human cancers. Efforts to identify therapeutic agents targeting cancer metastasis frequently fail to demonstrate efficacy in clinical trials despite strong preclinical evidence. Until recently, most preclinical studies used mouse models to evaluate anti-metastatic agents. Mouse models are time-consuming and expensive. In addition, an important drawback is that mouse models inadequately model the early stages of metastasis which plausibly leads to the poor correlation with clinical outcomes.Here, we report an in vivo model based on xenografted zebrafish embryos where we select for progressively invasive subpopulations of MDA-MB-231 breast cancer cells. A subpopulation analogous to circulating tumor cells found in human cancers was selected by injection of MDA-MB-231 cells into the yolk sacs of 2 days post-fertilized zebrafish embryos and selecting cells that migrated to the tail. The selected subpopulation derived from MDA-MB-231 cells were increasingly invasive in zebrafish. Isolation of these subpopulations and propagation in vitro revealed morphological changes consistent with activation of an epithelial-mesenchymal transition program. Differential gene analysis and knockdown of genes identified gene-candidates (DDIT4, MT1X, CTSD, and SERPINE1) as potential targets for anti-metastasis therapeutics. Furthermore, RNA-splicing analysis reinforced the importance of BIRC5 splice variants in breast cancer metastasis. This is the first report using zebrafish to isolate and expand progressively invasive populations of human cancer cells. The model has potential applications in understanding the metastatic process, identification and/or development of therapeutics that specifically target metastatic cells and formulating personalized treatment strategies for individual cancer patients.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3