Abstract
Abstract
There is a substantial loss of value in bovine leather every year due to a leather quality defect known as “looseness”. Data show that 7% of domestic hide production is affected to some degree, with a loss of $35 m in export returns. This investigation is devoted to gaining a better understanding of tight and loose wet blue leather based on vibrational spectroscopy observations of its structural variations caused by physical and chemical changes that also affect the tensile and tear strength. Several regions from the wet blue leather were selected for analysis. Samples of wet blue bovine leather were collected and studied in the sliced form using Raman spectroscopy (using 532 nm excitation laser) and Attenuated Total Reflectance - Fourier Transform InfraRed (ATR-FTIR) spectroscopy. The purpose of this study was to use ATR-FTIR and Raman spectra to classify distal axilla (DA) and official sampling position (OSP) leather samples and then employ univariate or multivariate analysis or both. For univariate analysis, the 1448 cm− 1 (CH2 deformation) band and the 1669 cm− 1 (Amide I) band were used for evaluating the lipid-to-protein ratio from OSP and DA Raman and IR spectra as indicators of leather quality. Curve-fitting by the sums-of-Gaussians method was used to calculate the peak area ratios of 1448 and 1669 cm− 1 band. The ratio values obtained for DA and OSP are 0.57 ± 0.099, 0.73 ± 0.063 for Raman and 0.40 ± 0.06 and 0.50 ± 0.09 for ATR-FTIR. The results provide significant insight into how these regions can be classified. Further, to identify the spectral changes in the secondary structures of collagen, the Amide I region (1600–1700 cm− 1) was investigated and curve-fitted-area ratios were calculated. The 1648:1681 cm− 1 (non-reducing: reducing collagen types) band area ratios were used for Raman and 1632:1650 cm− 1 (triple helix: α-like helix collagen) for IR. The ratios show a significant difference between the two classes. To support this qualitative analysis, logistic regression was performed on the univariate data to classify the samples quantitatively into one of the two groups. Accuracy for Raman data was 90% and for ATR-FTIR data 100%. Both Raman and ATR-FTIR complemented each other very well in differentiating the two groups. As a comparison, and to reconfirm the classification, multivariate analysis was performed using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The results obtained indicate good classification between the two leather groups based on protein and lipid content. Principal component score 2 (PC2) distinguishes OSP and DA by symmetrically grouping samples at positive and negative extremes. The study demonstrates an excellent model for wider research on vibrational spectroscopy for early and rapid diagnosis of leather quality.
Graphical abstract
Funder
Ministry of Business, Innovation and Employment, New Zealand
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Carter K. Don’t Hide from the truth.2008.https://www.theguardian.com/lifeandstyle/2008/aug/27/ethicalfashion, Accessed 27 Aug 2008.
2. Masciana P. World statistical compendium for raw hides and skins, leather and leather footwear 1998-2014. Rome: FAO; 2015. p. 1–122.
3. Covington AD. Tanning chemistry: the science of leather. Cambridge: Royal Society of Chemistry; 2009.
4. Wells HC, Holmes G, Haverkamp RG. Looseness in bovine leather: microstructural characterization. J Sci Food Agric. 2016;96(8):2731–6.
5. Shelly DC. Raman spectroscopy of wet blue bovine leather. J Am Leather Chem Assoc. 2009;104:9-15.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献