Therapeutic potential of gelatine methacrylate hydrogels loaded with macrophage-derived exosomes for accelerating angiogenesis and cutaneous wound healing

Author:

Liu Jiajun,Chen Fuying,Tian Luoqiang,Wu Jinjie,Liu Keting,Wan Qiwen,Yuan Bo,Zhu Xiangdong,Chen XueningORCID,Zhang Xingdong

Abstract

AbstractExtensive studies demonstrate that macrophage response plays an important role in regulating angiogenesis via a paracrine way, which is crucial for skin wound repair. This study isolated and characterized nanosized exosomes from differently polarized macrophages (MΦ), including M0 (naïve), M1 (pro-inflammatory), and M2 (anti-inflammatory) macrophages, and further assessed their impacts on angiogenesis and skin regeneration. Our results indicated that compared to M0 and M1 counterparts, M2 macrophage-derived exosomes (M2-Exos) exhibited a pronounced ability to promote angiogenic ability of of human umbilical vein endothelial cells (HUVECs) by enhancing expression of angiogenic genes and proteins, increasing cell migration, and improving tubulogenesis. Bioinformatics analyses suggested that the distinct angiogenic potentials of three MΦ-Exos might be attributed to the differentially expressed angiogenesis-related miRNAs and their target genes such as Stat3, Smad 2, and Smad4. Moreover, these isolated MΦ-Exos were integrated with gelatine methacrylate (GelMA) hydrogels to achieve the sustained delivery at murine full-thickness cutaneous wound sites. In vivo results showed that Gel/M2-Exos significantly augmented angiogenesis, accelerated re-epithelialization, promoted collagen maturity, thereby promoting wound healing. In contrary, Gel/M1-Exos showed the opposite effects. Our findings provided compelling evidence that the polarization status of macrophages significantly affected angiogenesis and wound healing via the miRNA cargos of their derived exosomes. Moreover, this study opens a new avenue for developing nano-scale, cell-free exosome-based therapies in treating cutaneous wounds. Graphical abstract

Funder

National Science Foundation of China

National Key Research and Development Program of China

Sichuan Science and Technology Innovation Team of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3