Robust conductive skin hydrogel e-skin constructed by top–down strategy for motion-monitoring

Author:

Liu Jiachang,Fan Xin,Astruc Didier,Gu HaibinORCID

Abstract

AbstractThe construction of biomass-based conductive hydrogel e-skins with high mechanical properties is the research hotspot and difficulty in the field of biomass materials. Traditional collagen-based conductive hydrogels, constructed by the typical “bottom–up” strategy, normally have the incompatible problem between high mechanical property and high collagen content, and the extraction of collagen is often necessary. To solve these problems, inspired by the high mechanical properties and high collagen content of animal skins, this work proposed a “top–down” construction strategy, in which the extraction of collagen was unnecessary and the skin collagen skeleton (SCS) with the 3D network structure woven by natural collagen fibers in goatskin was preserved and used as the basic framework of hydrogel. Following a four-step route, namely, pretreatment → soaking in AgNPs (silver nanoparticles) solution → soaking in the mixed solution containing HEA (2-hydroxyethyl methacrylate) and AlCl3 → polymerization, this work successfully achieved the fabrication of a new skin-based conductive hydrogel e-skin with high mechanical properties (tensile strength of 2.97 MPa, toughness of 6.23 MJ·m−3 and breaking elongation of 428%) by using goatskin as raw material. The developed skin hydrogel (called PH@Ag) possessed a unique structure with the collagen fibers encapsulated by PHEA, and exhibited satisfactory adhesion, considerable antibacterial property, cytocompatibility, conductivity (3.06 S·m−1) and sensing sensitivity (the maximum gauge factor of 5.51). The PH@Ag e-skin could serve as strain sensors to accurately monitor and recognize all kinds of human motions such as swallowing, frowning, walking, and so on, and thus is anticipated to have considerable application prospect in many fields including flexible wearable electronic devices, health and motion monitoring. Graphical abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3