Superamphiphilic aerogels with 2D lamellar structure of gelatin-tuned 3D supramolecular network of collagen fibers for high-performance separation of surfactant-stabilized emulsified oily wastewater

Author:

Liu Honglian,Xiao Hanzhong,Hao Baicun,Zheng Wan,Wang Yujia,Huang Xin,Shi Bi

Abstract

AbstractSuperwetting aerogel is a promising alternative for the remediation of emulsified oily wastewater for its high porosity combined with extreme wettability enabled high separation performances to emulsion wastewater. However, it remains challenging for superwetting aerogels to accomplish high-performance dual separation to surfactant-stabilized oil-in-water (O/W) and water-in-oil (W/O) emulsions with high stability. Herein, an environmentally benign superamphiphilic composite aerogel was prepared by a green synthesis route that relied on the utilization of natural amphiphilic biomass. Collagen fibers (CFs) were utilized to construct the three-dimensional (3D) supramolecular skeleton of aerogel to provide high storage capacity of water/oil and outstanding capillary effect to boost the mass transfer. The two-dimensional (2D) lamellar structure of gelatin (Gel) was further grown on the skeleton of CFs aerogel to play the role for simultaneously enhanced demulsifying capability and spreading of emulsions. The as-prepared superamphiphilic aerogel enabled the separation of highly stable surfactant-stabilized O/W and W/O emulsions with high separation efficiency and flux. Excellent recycling performances and anti-fouling performance were also confirmed. Our investigations therefore demonstrated that the structural engineering of superamphiphilic aerogel is a promising way to realize high-performance dual separation of surfactant-stabilized O/W and W/O emulsion wastewater. Graphical Abstract

Funder

the National Natural Science Foundation of China

Philippine Council for Industry, Energy, and Emerging Technology Research and Development

the National Key Research and Development Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3