Flake channels construction of hydroxyapatite/gelatin cryogel with excellent flame retardant properties for enhancing the capturing of iodine

Author:

Wei Yanxia,Wang Bo,Cao Liyan,Cheng Xin,Qiao Yuhan,Duan Tao,He Guiqiang,Ding Pingping,Zhou Yan,Zhou JianORCID

Abstract

AbstractSafe and efficient capturing of volatile radioiodine is of extremely important significance in the treatment of spent fuel. Herein, the flake channels in gelatin-hydroxyapatite (HAP@Ge) cryogel with excellent flame retardant properties were constructed by immobilizing hydroxyapatite nanorods (HAP) on Gelatin (Ge) cryogel for enhancing the capturing of iodine. The immobilization of HAP nanorods enhanced thermal stability, provided low rates of dynamic heat transfer and dissipation, and remarkably improved the flame retardant and smoke suppression properties of the Ge cryogel, which can effectively prevent the occurrence of safety incidents caused by further thermal degradation or combustion of this cryogel. More importantly, it was effective in improving the rapid enrichment of iodine, resulting in a high adsorption capacity. The maximum adsorption capacity of HAP@Ge cryogel for iodine vapor reached 2693 mg/g at equilibrium. The high adsorption capacity for iodine was attributed to the multi-scale porous structure in HAP@Ge cryogel, which offered effective channels for iodine diffusion, whereas the numerous complex and irregular flakes provided sufficient number of active sites for iodine capture. The adsorption process was chemical in nature and involved the -PO43−, –OH, –C=O, and –NHR groups on HAP@Ge cryogel. Moreover, the complex porous structure of HAP@Ge cryogel enhanced the physical capturing of iodine. These advantages, such as low-cost raw material, simple preparation method, good flame retardancy, and excellent capturing performance for iodine indicated that HAP@Ge cryogel is a potential candidate for the removal of radioactive iodine in the exhaust gas stream of post-treatment plants. Graphical Abstract

Funder

Natural Science Foundation of Sichuan Province

NHC Key Laboratory of Nuclear Technology Medical Transformation

Doctoral Foundation of Southwest University of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3