Organosilicon leather coating technology based on carbon peak strategy

Author:

Wang Wenkai,Fan Haojun,Song Lijiang,Wang Zhenya,Li Heng,Xiang Jun,Huang Qiang,Chen Xiangquan

Abstract

AbstractBased on the demand of carbon peak and carbon emission reduction strategy, divinyl-terminated polydimethylsiloxane (ViPDMSVi), poly(methylhydrosiloxane) (PMHS), divinyl-terminated polymethylvinylsiloxane (ViPMVSVi), and fumed silica were used as primary raw materials, polydimethylsiloxane (PDMS) synthetic leather coating was in situ constructed by thermally induced hydrosilylation polymerization on the synthetic leather substrate. The effect of the viscosity of ViPDMSVi, the active hydrogen content of PMHS, the molar ratio of vinyl groups to active hydrogen, the dosage of ViPMVSVi and fumed silica on the performance of PDMS polymer coating, including mechanical properties, cold resistance, flexural resistance, abrasion resistance, hydrophobic and anti-fouling properties were investigated. The results show that ViPDMSVi with high vinyl content and PMHS with low active hydrogen content is more conducive to obtaining organosilicon coating with better mechanical properties, the optimized dosage of ViPMVSVi and fumed silica was 7 wt% and 40 wt%, respectively. In this case, the tensile strength and the broken elongation of the PDMS polymer coating reached 5.96 MPa and 481%, showing reasonable mechanical properties for leather coating. Compared with polyurethane based or polyvinyl chloride based synthetic leather, the silicon based synthetic leather prepared by this method exhibits excellent cold resistance, abrasion resistance, super hydrophobicity, and anti-fouling characteristics. Graphical Abstract

Funder

National Natural Science Foundation of China

Pioneers & Leader Research and Development Program of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3