Sustainable metal-free leather manufacture via synergistic effects of triazine derivative and vegetable tannins

Author:

Xiao Yuanhang,Zhou Jiajing,Wang Chunhua,Zhang Jinwei,Radnaeva Vera D.,Lin WeiORCID

Abstract

AbstractRestrictions on heavy metals, especially chromium, have encouraged alternative tanning systems that can reduce environmental and human health risks from conventional chrome-based tanning. In this work, metal-free combination tanning was developed by using vegetable tannins and a triazine-based syntan containing active chlorine groups (SACC). Specifically, the relationship between leather performance (e.g., hydrothermal stability and organoleptic properties) and technical protocols (e.g., types and dose of tannins) was systematically established. The optimized protocol involving a unique procedure (i.e., 10% SACC pre-tanning, shaving, and 25% wattle tanning) endowed the leather with high shrinkage temperature (~ 92 °C) and met the Chinese standards for shoe upper leather (QB/T 1873-2010). Our method not only produces zero chrome-containing solid wastes, but also uses ~ 75% less tannin for leather manufacture. The excellent leather performance was ascribed to the synergistic effects, where SACC and wattle diffused into collagen fibrils and may bind to collagen via covalent, hydrogen and ionic bonding, locking the hierarchical structure of collagen from microfibrils to fiber bundles. Moreover, we summarized these findings and proposed a diffusion-binding-locking mechanism, providing new insights for current tanning theory. Together with the biodegradable spent tanning liquor, this approach will underpin the development of sustainable leather manufacture. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3