Author:
Jimenez-Lopez Jose C,Gachomo Emma W,Seufferheld Manfredo J,Kotchoni Simeon O
Abstract
Abstract
Background
The completion of maize genome sequencing has resulted in the identification of a large number of uncharacterized genes. Gene annotation and functional characterization of gene products are important to uncover novel protein functionality.
Results
In this paper, we identify, and annotate members of all the maize aldehyde dehydrogenase (ALDH) gene superfamily according to the revised nomenclature criteria developed by ALDH Gene Nomenclature Committee (AGNC). The maize genome contains 24 unique ALDH sequences encoding members of ten ALDH protein families including the previously identified male fertility restoration RF2A gene, which encodes a member of mitochondrial class 2 ALDHs. Using computational modeling analysis we report here the identification, the physico-chemical properties, and the amino acid residue analysis of a novel tunnel like cavity exclusively found in the maize sterility restorer protein, RF2A/ALDH2B2 by which this protein is suggested to bind variably long chain molecular ligands and/or potentially harmful molecules.
Conclusions
Our finding indicates that maize ALDH superfamily is the most expanded of plant ALDHs ever characterized, and the mitochondrial maize RF2A/ALDH2B2 is the only plant ALDH that harbors a newly defined pocket/cavity with suggested functional specificity.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Yoshida A, Rzhetsky A, Hsu LC, Chang C: Human aldehyde dehydrogenase gene family. Eur J Biochem 1998, 251: 549–557. 10.1046/j.1432-1327.1998.2510549.x
2. Bartels D: Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance? Trends Plant Sci 2001, 6: 284–286. 10.1016/S1360-1385(01)01983-5
3. Kotchoni SO, Bartels D: Water stress induces the up-regulation of a specific set of genes in plants: aldehyde dehydrogenase as an example. Bulg J Plant Physiol 2003, (Special):37–51.
4. Lindahl R: Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol 1992, 27: 283–335. 10.3109/10409239209082565
5. Schauenstein E, Esterbauer H, Zollner H: Aldehydes in Biological Systems: Their Natural Occurrence and Biological Activities. Pion, London 1977.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献