Author:
Huggins Wayne,Ghosh Sujit K,Wollenzien Paul
Abstract
Abstract
Background
Conformational flexibility in structured RNA frequently is critical to function. The 30S ribosomal subunit exists in different conformations in different functional states due to changes in the central part of the 16S rRNA. We are interested in evaluating the factors that might be responsible for restricting flexibility to specific parts of the 16S rRNA using biochemical data obtained from the 30S subunit in solution. This problem was approached taking advantage of the observation that there must be a high degree of conformational flexibility at sites where UV photocrosslinking occurs and a lack of flexibility inhibits photoreactivity at many other sites that are otherwise suitable for reaction.
Results
We used 30S x-ray structures to quantify the properties of the nucleotide pairs at UV- and UVA-s4U-induced photocrosslinking sites in 16S rRNA and compared these to the properties of many hundreds of additional sites that have suitable geometry but do not undergo photocrosslinking. Five factors that might affect RNA flexibility were investigated – RNA interactions with ribosomal proteins, interactions with Mg2+ ions, the presence of long-range A minor motif interactions, hydrogen bonding and the count of neighboring heavy atoms around the center of each nucleobase to estimate the neighbor packing density. The two factors that are very different in the unreactive inflexible pairs compared to the reactive ones are the average number of hydrogen bonds and the average value for the number of neighboring atoms. In both cases, these factors are greater for the unreactive nucleotide pairs at a statistically very significant level.
Conclusion
The greater extent of hydrogen bonding and neighbor atom density in the unreactive nucleotide pairs is consistent with reduced flexibility at a majority of the unreactive sites. The reactive photocrosslinking sites are clustered in the 30S subunit and this indicates nonuniform patterns of hydrogen bonding and packing density in the 16S rRNA tertiary structure. Because this analysis addresses inter-nucleotide distances and geometry between nucleotides distant in the primary sequence, the results indicate regional and global flexibility of the rRNA.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献