Investigating dynamic and energetic determinants of protein nucleic acid recognition: analysis of the zinc finger zif268-DNA complexes

Author:

Torella Rubben,Moroni Elisabetta,Caselle Michele,Morra Giulia,Colombo Giorgio

Abstract

Abstract Background Protein-DNA recognition underlies fundamental biological processes ranging from transcription to replication and modification. Herein, we present a computational study of the sequence modulation of internal dynamic properties and of intraprotein networks of aminoacid interactions that determine the stability and specificity of protein-DNA complexes. Results To this aim, we apply novel theoretical approaches to analyze the dynamics and energetics of biological systems starting from MD trajectories. As model system, we chose different sequences of Zinc Fingers (ZF) of the Zif268 family bound with different sequences of DNA. The complexes differ for their experimental stability properties, but share the same overall 3 D structure and do not undergo structural modifications during the simulations. The results of our analysis suggest that the energy landscape for DNA binding may be populated by dynamically different states, even in the absence of major conformational changes. Energetic couplings between residues change in response to protein and/or DNA sequence variations thus modulating the selectivity of recognition and the relative importance of different regions for binding. Conclusions The results show differences in the organization of the intra-protein energy-networks responsible for the stabilization of the protein conformations recognizing and binding DNA. These, in turn, are reflected into different modulation of the ZF's internal dynamics. The results also show a correlation between energetic and dynamic properties of the different proteins and their specificity/selectivity for DNA sequences. Finally, a dynamic and energetic model for the recognition of DNA by Zinc Fingers is proposed.

Publisher

Springer Science and Business Media LLC

Subject

Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3