Author:
Siglioccolo Alessandro,Paiardini Alessandro,Piscitelli Maria,Pascarella Stefano
Abstract
Abstract
Background
Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs.
Results
The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments.
Conclusions
Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Egorova K, Antranikian G: Industrial relevance of thermophilic Archaea . Curr Opin Microbiol 2005, 8: 649–655. 10.1016/j.mib.2005.10.015
2. Pikuta EV, Hoover RB, Tang J: Microbial extremophiles at the limits of life. Crit Rev Microbiol 2007, 33: 183–209. 10.1080/10408410701451948
3. Oren A: Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat Microb Ecol 2009, 56: 193–204.
4. Ebrahimie E, Ebrahimi M, Sarvestani NR, Ebrahimi M: Protein attributes contribute to halo-stability, bioinformatics approach. Saline Systems 2011., 7:
5. Feller G: Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 2010., 22:
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献