Author:
Liu Tianyun,Guerquin Michal,Samudrala Ram
Abstract
Abstract
Background
Comparative modeling is a technique to predict the three dimensional structure of a given protein sequence based primarily on its alignment to one or more proteins with experimentally determined structures. A major bottleneck of current comparative modeling methods is the lack of methods to accurately refine a starting initial model so that it approaches the resolution of the corresponding experimental structure. We investigate the effectiveness of a graph-theoretic clique finding approach to solve this problem.
Results
Our method takes into account the information presented in multiple templates/alignments at the three-dimensional level by mixing and matching regions between different initial comparative models. This method enables us to obtain an optimized conformation ensemble representing the best combination of secondary structures, resulting in the refined models of higher quality. In addition, the process of mixing and matching accumulates near-native conformations, resulting in discriminating the native-like conformation in a more effective manner. In the seventh Critical Assessment of Structure Prediction (CASP7) experiment, the refined models produced are more accurate than the starting initial models.
Conclusion
This novel approach can be applied without any manual intervention to improve the quality of comparative predictions where multiple template/alignment combinations are available for modeling, producing conformational models of higher quality than the starting initial predictions.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Moult J: Predicting protein three-dimensional structure. Curr Opin Biotechnol 1999, 10(6):583–588.
2. Krieger E, Nabuurs SB, Vriend G: Homology modeling. In Structural Bioinformatics. Edited by: Philip EB, Helge W. Hoboken, New Jersey: Wiley-Liss, Inc; 2003:509–523.
3. Schonbrun J, Wedemeyer WJ, Baker D: Protein structure prediction in 2002. Curr Opin Struct Biol 2002, 12(3):348–354.
4. Moult J: A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol 2005, 15(3):285–289.
5. Chakravarty S, Wang L, Sanchez R: Accuracy of structure-derived properties in simple comparative models of protein structures. Nucleic Acids Res 2005, 33(1):244–259.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献