Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field

Author:

Kmiecik Sebastian,Gront Dominik,Kolinski Andrzej

Abstract

Abstract Background Although experimental methods for determining protein structure are providing high resolution structures, they cannot keep the pace at which amino acid sequences are resolved on the scale of entire genomes. For a considerable fraction of proteins whose structures will not be determined experimentally, computational methods can provide valuable information. The value of structural models in biological research depends critically on their quality. Development of high-accuracy computational methods that reliably generate near-experimental quality structural models is an important, unsolved problem in the protein structure modeling. Results Large sets of structural decoys have been generated using reduced conformational space protein modeling tool CABS. Subsequently, the reduced models were subject to all-atom reconstruction. Then, the resulting detailed models were energy-minimized using state-of-the-art all-atom force field, assuming fixed positions of the alpha carbons. It has been shown that a very short minimization leads to the proper ranking of the quality of the models (distance from the native structure), when the all-atom energy is used as the ranking criterion. Additionally, we performed test on medium and low accuracy decoys built via classical methods of comparative modeling. The test placed our model evaluation procedure among the state-of-the-art protein model assessment methods. Conclusion These test computations show that a large scale high resolution protein structure prediction is possible, not only for small but also for large protein domains, and that it should be based on a hierarchical approach to the modeling protocol. We employed Molecular Mechanics with fixed alpha carbons to rank-order the all-atom models built on the scaffolds of the reduced models. Our tests show that a physic-based approach, usually considered computationally too demanding for large-scale applications, can be effectively used in such studies.

Publisher

Springer Science and Business Media LLC

Subject

Structural Biology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3