Solution structure of the human signaling protein RACK1

Author:

Gonçalves Kaliandra A,Borges Julio C,Silva Julio C,Papa Priscila F,Bressan Gustavo C,Torriani Iris L,Kobarg Jörg

Abstract

Abstract Background The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki-1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 ± 0.2) × 106 M-1 and resulted in a dissociation constant (KD) of (0.7 ± 0.1) × 10-6 M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.

Publisher

Springer Science and Business Media LLC

Subject

Structural Biology

Reference51 articles.

1. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D: Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 1994, 91: 839–843. 10.1073/pnas.91.3.839

2. Smith TF, Gaitatzes C, Saxena K, Neer EJ: The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 1999, 24: 181–185. 10.1016/S0968-0004(99)01384-5

3. Padanilam BJ, Hammerman MR: Ischemia-induced receptor for activated C kinase (RACK1) expression in rat kidneys. Am J Physiol 1997, 272: F160-F166.

4. Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ: RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 2000, 14: 2549–2558. 10.1096/fj.99-1038com

5. Pass JM, Gao J, Jones WK, Wead WB, Wu X, Zhang J, Baines CP, Bolli R, Zheng YT, Joshua IG, Ping P: Enhanced PKC beta II translocation and PKC beta II-RACK1 interactions in PKC epsilon-induced heart failure: a role for RACK1. Am J Physiol 2001, 281: H2500-H2510.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3