Expression of factor XIII originating from synovial fibroblasts and macrophages induced by interleukin-6 signaling

Author:

Watanabe Hirofumi,Mokuda ShoORCID,Tokunaga Tadahiro,Kohno Hiroki,Ishitoku Michinori,Araki Kei,Sugimoto Tomohiro,Yoshida Yusuke,Yamamoto Toshihiro,Matsumoto Mayuko,Masumoto Junya,Hirata Shintaro,Sugiyama Eiji

Abstract

Abstract Background Blood coagulation factor XIII (FXIII) promotes cross-linking between fibrin molecules at the final stage of the blood coagulation cascade. However, its expression in cells or tissues and function, particularly factor XIII subunit B (FXIII-B), remains controversial. Hemorrhagic FXIII deficiency following anti-interleukin-6 (IL-6) receptor antibody treatment has been reported in patients with rheumatoid arthritis (RA). Patients receiving this biologics have reduced FXIII activity when compared to the activity in those treated with other biologics. The relationship between pro-inflammatory cytokines and FXIII expression remains unknown. Methods To investigate the expression pattern of FXIII in synovial tissues, immunohistochemistry, RT-qPCR, and western blotting were performed. FXIII-A expressed monocyte-derived macrophages were treated with recombinant IL-6 and anti-IL-6 receptor antibody. RNA sequencing of FXIII-B-overexpressing cells was performed to clarify the function of FXIII-B. Results The immunohistochemical analysis of synovial tissues revealed that factor XIII subunit A (FXIII-A) was expressed in M2 macrophages, and FXIII-B was expressed in fibroblast-like synoviocytes. IL-6 stimulation upregulated FXIII-A expression in IL-4-induced monocyte-derived macrophages, and the anti-IL-6 receptor antibody suppressed FXIII-A expression. FXIII-B was more abundantly secreted in the supernatant of fibroblast-like synoviocytes compared with that of other cells. RNA sequencing showed that FXIII-B elevated the expression of genes associated with anti-apoptotic molecules and chemokines. Conclusions Our findings highlight that synovial tissue is one of the sources of FXIII production. We also have demonstrated IL-6-dependent FXIII-A expression and the novel potential functions of FXIII-B.

Funder

Japan College of Rheumatology Grant for Promoting Research for Early RA

JSPS KAKENHI

Mitsubishi Foundation

Takeda Science Foundation

Mochida Memorial Foundation for Medical and Pharmaceutical Research

Japanese Respiratory Foundation

Japan Rheumatism Foundation

Nakatomi Foundation

Okinaka Memorial Institute for Medical Research

Tsuchiya Memorial Medical Foundation

Publisher

Springer Science and Business Media LLC

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3