CXCL10 deficiency limits macrophage infiltration, preserves lung matrix, and enables lung growth in bronchopulmonary dysplasia
-
Published:2023-10-24
Issue:1
Volume:43
Page:
-
ISSN:1880-8190
-
Container-title:Inflammation and Regeneration
-
language:en
-
Short-container-title:Inflamm Regener
Author:
Hirani Dharmesh V., Thielen Florian, Mansouri Siavash, Danopoulos Soula, Vohlen Christina, Haznedar-Karakaya Pinar, Mohr Jasmine, Wilke Rebecca, Selle Jaco, Grosch Thomas, Mizik Ivana, Odenthal Margarete, Alvira Cristina M., Kuiper-Makris Celien, Pryhuber Gloria S., Pallasch Christian, van Koningsbruggen-Rietschel S., Al-Alam Denise, Seeger Werner, Savai Rajkumar, Dötsch Jörg, Alejandre Alcazar Miguel A.ORCID
Abstract
AbstractPreterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10−/−) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10−/− mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10−/− mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.
Funder
Deutsche Forschungsgemeinschaft Marga und Walter Boll-Stiftung Else Kröner-Fresenius-Stiftung Center for Molecular Medicine Cologne, University of Cologne Stiftung Oskar-Helene-Heim NIH NHLBI Universitätsklinikum Köln
Publisher
Springer Science and Business Media LLC
Subject
Immunology,Immunology and Allergy
Reference64 articles.
1. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sanchez PJ, Van Meurs KP, Wyckoff M, et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA. 2015;314(10):1039–51. 2. Bland RD, Xu L, Ertsey R, Rabinovitch M, Albertine KH, Wynn KA, Kumar VH, Ryan RM, Swartz DD, Csiszar K, et al. Dysregulation of pulmonary elastin synthesis and assembly in preterm lambs with chronic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;292(6):L1370-1384. 3. Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, et al. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol. 2018;73:77–104. 4. Alejandre-Alcazar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Perez J, Wygrecka M, Eul B, Kobrich S, Hesse M, et al. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L537-549. 5. Mizikova I, Ruiz-Camp J, Steenbock H, Madurga A, Vadasz I, Herold S, Mayer K, Seeger W, Brinckmann J, Morty RE. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2015;308(11):L1145-1158.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|