Author:
Cui Qianqian,Xu Jiabo,Zhang Qiang,Wang Kai
Abstract
Abstract
In this paper, we construct a nonstandard finite difference (NSFD) scheme for an SIR epidemic model of childhood disease with constant strategy. The dynamics of the obtained discrete model is investigated. First we show that the discrete model has equilibria which are exactly the same as those of the continuous model. Furthermore, we prove that the conditions for those equilibria to be globally asymptotically stable are consistent with the continuous model for any size of numerical time-step. The analytical results are confirmed by some numerical simulations.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference26 articles.
1. Arafa AAM, Rida SZ, Khalil M: Solutions of fractional order model of childhood diseases with constant vaccination strategy. Math. Sci. Lett. 2013, 1: 17–23.
2. Cui Q, Yang X, Zhang Q: An NSFD scheme for a class of SIR epidemic model with vaccination and treatment. J. Differ. Equ. Appl. 2014, 20: 416–422. 10.1080/10236198.2013.844802
3. Li J, Zhang J, Ma Z: Global analysis of some epidemic models with general contact rate and constant immigration. Appl. Math. Mech. 2004, 4: 396–404.
4. Makinde OD: Adomian decomposition approach to a SIR epidemic model with constant vaccination strategy. Appl. Math. Comput. 2007, 184: 842–848. 10.1016/j.amc.2006.06.074
5. Mickens RE: A SIR-model with square-root dynamics: an NSFD scheme. J. Differ. Equ. Appl. 2010, 16: 209–216. 10.1080/10236190802495311
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献