Author:
Azadi Kenary H,Rezaei H,Sharifzadeh M,Shin DY,Lee JR
Abstract
Abstract
The main goal of this paper is to study the Hyers-Ulam-Rassias stability of the following Euler-Lagrange type additive functional equation:
∑
j
=
1
m
f
(
−
r
j
x
j
+
∑
1
≤
i
≤
m
,
i
≠
j
r
i
x
i
)
+
2
∑
i
=
1
m
r
i
f
(
x
i
)
=
m
f
(
∑
i
=
1
m
r
i
x
i
)
,
where
r
1
,
…
,
r
m
∈
R
,
∑
i
=
k
m
r
k
≠
0
, and
r
i
,
r
j
≠
0
for some
1
≤
i
<
j
≤
m
, in non-Archimedean Banach spaces.
MSC:39B22, 39B52, 46S10.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Algebra and Number Theory,Analysis
Reference34 articles.
1. Arriola LM, Beyer WA: Stability of the Cauchy functional equation over p -adic fields. Real Anal. Exch. 2005/06, 31: 125–132.
2. Balcerowski M:On the functional equation "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" on groups. Aequ. Math. 2009, 78: 247–255. 10.1007/s00010-009-2975-9
3. Cho YJ, Park C, Saadati R: Functional inequalities in non-Archimedean in Banach spaces. Appl. Math. Lett. 2010, 60: 1994–2002.
4. Cho YJ, Saadati R: Lattice non-Archimedean random stability of ACQ functional equation. Adv. Differ. Equ. 2011., 2011:
5. Cholewa PW: Remarks on the stability of functional equations. Aequ. Math. 1984, 27: 76–86. 10.1007/BF02192660
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献