Author:
Fujiki Katsunori,Kano Fumi,Shiota Kunio,Murata Masayuki
Abstract
Abstract
Background
Adipose tissues serve not only as a store for energy in the form of lipid, but also as endocrine tissues that regulates metabolic activities of the organism by secreting various kinds of hormones. Peroxisome proliferator activated receptor γ (PPARγ) is a key regulator of adipocyte differentiation that induces the expression of adipocyte-specific genes in preadipocytes and mediates their differentiation into adipocytes. Furthermore, PPARγ has an important role to maintain the physiological function of mature adipocyte by controlling expressions of various genes properly. Therefore, any reduction in amount and activity of PPARγ is linked to the pathogenesis of metabolic syndrome.
Results
In this study, we investigated the contribution of epigenetic transcriptional regulatory mechanisms, such as DNA methylation, to the expression of the PPARγ gene, and further evaluated the contribution of such epigenetic regulatory mechanisms to the pathogenesis of metabolic syndrome. In 3T3-L1 preadipocytes, the promoter of the PPARγ2 gene was hypermethylated, but was progressively demethylated upon induction of differentiation, which was accompanied by an increase of mRNA expression. Moreover, treatment of cells with 5'-aza-cytideine, an inhibitor of DNA methylation, increased expression of the PPARγ gene in a dose-dependent manner. Methylation in vitro of a PPARγ promoter-driven reporter construct also repressed the transcription of a downstream reporter gene. These results suggest that the expression of the PPARγ gene is inhibited by methylation of its promoter. We next compared the methylation status of the PPARγ promoters in adipocytes from wild-type (WT) mice with those from two diabetic mouse models: +Lepr
db
/+Lepr
db
and diet-induced obesity mice. Interestingly, we found increased methylation of the PPARγ promoter in visceral adipose tissues (VAT) of the mouse models of diabetes, compared to that observed in wild-type mice. We observed a concomitant decrease in the level of PPARγ mRNA in the diabetic mice compared to the WT mice.
Conclusion
We conclude that the expression of PPARγ gene is regulated by DNA methylation of its promoter region and propose that reduced expression of PPARγ owing to DNA methylation in adipocytes of the VAT may contribute to the pathogenesis of metabolic syndrome.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Cited by
207 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献