Author:
Ant Thomas,Koukidou Martha,Rempoulakis Polychronis,Gong Hong-Fei,Economopoulos Aris,Vontas John,Alphey Luke
Abstract
Abstract
Background
The olive fruit fly, Bactrocera oleae, is the major arthropod pest of commercial olive production, causing extensive damage to olive crops worldwide. Current control techniques rely on spraying of chemical insecticides. The sterile insect technique (SIT) presents an alternative, environmentally friendly and species-specific method of population control. Although SIT has been very successful against other tephritid pests, previous SIT trials on olive fly have produced disappointing results. Key problems included altered diurnal mating rhythms of the laboratory-reared insects, resulting in asynchronous mating activity between the wild and released sterile populations, and low competitiveness of the radiation-sterilised mass-reared flies. Consequently, the production of competitive, male-only release cohorts is considered an essential prerequisite for successful olive fly SIT.
Results
We developed a set of conditional female-lethal strains of olive fly (named Release of Insects carrying a Dominant Lethal; RIDL®), providing highly penetrant female-specific lethality, dominant fluorescent marking, and genetic sterility. We found that males of the lead strain, OX3097D-Bol, 1) are strongly sexually competitive with wild olive flies, 2) display synchronous mating activity with wild females, and 3) induce appropriate refractoriness to wild female re-mating. Furthermore, we showed, through a large proof-of-principle experiment, that weekly releases of OX3097D-Bol males into stable populations of caged wild-type olive fly could cause rapid population collapse and eventual eradication.
Conclusions
The observed mating characteristics strongly suggest that an approach based on the release of OX3097D-Bol males will overcome the key difficulties encountered in previous olive fly SIT attempts. Although field confirmation is required, the proof-of-principle suppression and elimination of caged wild-type olive fly populations through OX3097D-Bol male releases provides evidence for the female-specific RIDL approach as a viable method of olive fly control. We conclude that the promising characteristics of OX3097D-Bol may finally enable effective SIT-based control of the olive fly.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference34 articles.
1. Burrack HJ, Fornell AM, Connell JH, O'Connell NV, Phillips PA, Vossen PM, Zalom FG: Intraspecific larval competition in the olive fruit fly (Diptera: tephritidae). Environ Entomol. 2009, 38: 1400-1410. 10.1603/022.038.0508.
2. Daane KM, Johnson MW: Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol. 2010, 55: 151-169. 10.1146/annurev.ento.54.110807.090553.
3. Vontas J, Hernandez-Crespo P, Margaritopoulos JT, Ortego F, Feng H, Mathiopoulos KD, Hsu J: Insecticide resistance in Tephritid flies. Pest Biochem and Physiol. 2011, 100: 199-10.1016/j.pestbp.2011.04.004.
4. Dyck VA, Hendrichs J, Robinson AS: Sterile Insect Technique: Principles and practice in area-wide integrated pest management. 2005, Dordrecht, Netherlands: Springer
5. Economopoulos AP, Avtzis N, Zervas G, Tsitsipis J, Haniotakis G, Tsiropoulos G, Manoukas A: Control of the olive fly, Dacus oleae (Gmelin), by the combined effects of insecticides and release of gamma sterilised insects. J Appl Entomol. 1977, 83: 201-215.
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献