Author:
Desai Bela S,Shirolikar Seema,Ray Krishanu
Abstract
Abstract
Background
In Drosophila, all the 64 clonally derived spermatocytes differentiate in syncytium inside two somatic-origin cyst cells. They elongate to form slender spermatids, which are individualized and then released into the seminal vesicle. During individualization, differentiating spermatids are organized in a tight bundle inside the cyst, which is expected to play an important role in sperm selection. However, actual significance of this process and its underlying mechanism are unclear.
Results
We show that dynamic F-actin-based processes extend from the head cyst cell at the start of individualization, filling the interstitial space at the rostral ends of the maturing spermatid bundle. In addition to actin, these structures contained lamin, beta-catenin, dynamin, myosin VI and several other filopodial components. Further, pharmacological and genetic analyses showed that cytoskeletal stability and dynamin function are essential for their maintenance. Disruption of these F-actin based processes was associated with spermatid bundle disassembly and premature sperm release inside the testis.
Conclusion
Altogether, our data suggests that the head cyst cell adheres to the maturing spermatid heads through F-actin-based extensions, thus maintaining them in a tight bundle. This is likely to regulate mature sperm release into the seminal vesicle. Overall, this process bears resemblance to mammalian spermiation.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference69 articles.
1. Lindsley DL, Tokuyasu KT: Spermatogenesis. The Genetics and Biology of Drosophila. Edited by: Ashburner M, Wright TRF. 1980, London: Academic Press, 2d: 295-368.
2. Fuller MT: Genetic control of cell proliferation and differentiation in Drosophila spermatogenesis. Semin Cell Dev Biol. 1998, 9: 433-444.
3. Tokuyasu KT, Peacock WJ, Hardy RW: Dynamics of spermiogenesis in Drosophila melanogaster . I. Individualization process. Z Zellforsch Mikrosk Anat. 1972, 124: 479-506.
4. Tokuyasu KT, Peacock WJ, Hardy RW: Dynamics of spermiogenesis in Drosophila melanogaster . II. Coiling process. Z Zellforsch Mikrosk Anat. 1972, 127: 492-525.
5. Noguchi T, Miller KG: A role for actin dynamics in individualization during spermatogenesis in Drosophila melanogaster . Development. 2003, 130: 1805-1816.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献