Author:
Moratorio Gonzalo,Fischer Sabrina,Bianchi Sergio,Tomé Lorena,Rama Gonzalo,Obal Gonzalo,Carrión Federico,Pritsch Otto,Cristina Juan
Abstract
Abstract
It is widely accepted that the majority of cancers result from multiple cellular events leading to malignancy after a prolonged period of clinical latency, and that the immune system plays a critical role in the control of cancer progression. Bovine leukemia virus (BLV) is an oncogenic member of the Retroviridae family. Complete genomic sequences of BLV strains isolated from peripheral blood mononuclear cells (PBMC) from cattle have been previously reported. However, a detailed characterization of the complete genome of BLV strains directly isolated from bovine tumors is much needed in order to contribute to the understanding of the mechanisms of leukemogenesis induced by BLV in cattle. In this study, we performed a molecular characterization of BLV complete genomes from bovine B-cell lymphosarcoma isolates. A nucleotide substitution was found in the glucocorticoid response element (GRE) site of the 5' long terminal repeat (5'LTR) of the BLV isolates. All amino acid substitutions in Tax previously found to be related to stimulate high transcriptional activity of 5'LTR were not found in these studies. Amino acid substitutions were found in the nucleocapsid, gp51 and G4 proteins. Premature stop-codons in R3 were observed. Few mutations or amino acid substitutions may be needed to allow BLV provirus to achieve silencing. Substitutions that favor suppression of viral expression in malignant B cells might be a strategy to circumvent effective immune attack.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Burny A, Cleuter Y, Kettmann R, Mammerickx M, Marbaix G, Portetelle D, Van den Broeke A, Willems L, Thomas R: Bovine leukaemia: facts and hypothesis derived from the study of an infectious cancer. Cancer Surv. 1987, 6: 139-159.
2. Kettmann R, Deschamps J, Cleuter Y, Couez D, Burny A, Marbaix G: Leukemogenesis by bovine leukemia virus: proviral DNA integration and lack of RNA expression of viral long terminal repeat and 3′ proximate cellular sequences. Proc Natl Acad Sci U S A. 1982, 79: 2465-2469. 10.1073/pnas.79.8.2465.
3. Kettmann R, Cleuter Y, Mammerickx M, Meunier-Rotival M, Bernardi G, Burny A, Chantrenne H: Genomic integration of bovine leukemia provirus: comparison of persistent lymphocytosis with lymph node tumor from of enzootic. Proc Natl Acad Sci U S A. 1980, 77: 2577-2581. 10.1073/pnas.77.5.2577.
4. Pierard V, Guiguen A, Colin L, Wijmeersch G, Vanhulle C, Van Driessche B, Dekoninck A, Blazkova J, Cardona C, Merimi M, Vierendeel V, Calomme C, Nguyen T, Nuttinck M, Twizere JC, Kettmann R, Portetelle D, Burny A, Hirsch I, Rohr O, Van Lint C: DNA cytosine methylation in the Bovine Leukemia Virus promoter is associated with latency in a lymphoma-derived B-cell line. J Biol Chem. 2010, 285: 19434-19449. 10.1074/jbc.M110.107607.
5. Merimi M, Klener P, Szynal M, Cleuter Y, Bagnis C, Kerkhofs P, Burny A, Martiat P, Van den Broeke A: Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: observations in Bovine Leukemia Virus-infected sheep. Retrovirology. 2007, 4: e51-10.1186/1742-4690-4-51.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献