The dynamic influence of the DRB1*1101 allele on the resistance of sheep to experimental Teladorsagia circumcincta infection

Author:

Hassan Musa,Good Barbara,Hanrahan James P,Campion Deirdre,Sayers Gearoid,Mulcahy Grace,Sweeney Torres

Abstract

Abstract Suffolk sheep carrying the DRB1*1101 (previously referred to as-DRB1*0203 or G2) allele have been reported to show increased resistance to natural Teladorsagia circumcincta infection compared to non-carriers. The objective of this study was to compare the biochemical and physiological responses of DRB1*1101 carrier and non-carrier twin lambs to an experimental infection with 3 × 104 L3 Teladorsagia circumcincta. The variables studied included worm burden, faecal egg count, abomasal mast cells, IgA, IgE, IgG1 plus IgG2 and haematological parameters at 0, 3, 7, 21 and 35 days post infection (dpi), and duodenal smooth muscle contractility at 0 and 35 dpi. DRB1*1101 carrier lambs had significantly lower worm burden, higher mast cell and plasma platelet counts than the DRB1*1101 non-carriers (P < 0.05). Before infection, the non-carrier lambs exhibited significantly higher mucosal levels of all antibody isotypes measured compared to the carriers; these levels remained relatively stable over the course of infection in the non-carriers while there was a slow build up of these antibodies in the carriers up to day 21 post infection (pi). The DRB1*1101 non-carrier lambs had a significantly higher plasma lymphocyte count, and produced greater duodenal contractile force relative to the carrier lambs (P < 0.05). There was no significant difference between genotypes in the level of plasma eosinophils, monocytes, neutrophils or FEC. This evidence suggests that resistance conferred by DRB1*1101 is acquired rather than innate, depends on worm expulsion rather than fecundity and is dependent on mucosal mast cell proliferation, platelet activation, and IgA and IgE antibody responses.

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3