Author:
Chen Zeng-Weng,Chien Maw-Sheng,Chang Nai-Yun,Chen Ter-Hsin,Wu Chi-Ming,Huang Chienjin,Lee Wei-Cheng,Hsuan Shih-Ling
Abstract
Abstract
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) causes fibrino-hemorrhagic necrotizing pleuropneumonia in pigs. Production of proinflammatory mediators in the lungs is an important feature of A. pleuropneumoniae infection. However, bacterial components other than lipopolysaccharide involved in this process remain unidentified. The goals of this study were to determine the role of A. pleuropneumoniae exotoxin ApxI in cytokine induction and to delineate the underlying mechanisms. Using real-time quantitative PCR analysis, we found native ApxI stimulated porcine alveolar macrophages (PAMs) to transcribe mRNAs of IL-1β, IL-8 and TNF-α in a concentration- and time-dependent manner. Heat-inactivation or pre-incubation of ApxI with a neutralizing antiserum attenuated ApxI bioactivity to induce cytokine gene expression. The secretion of IL-1β, IL-8 and TNF-α protein from PAMs stimulated with ApxI was also confirmed by quantitative ELISA. In delineating the underlying signaling pathways contributing to cytokine expression, we observed mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK) were activated upon ApxI stimulation. Administration of an inhibitor specific to p38 or JNK resulted in varying degrees of attenuation on ApxI-induced cytokine expression, suggesting the differential regulatory roles of p38 and JNK in IL-1β, IL-8 and TNF-α production. Further, pre-incubation of PAMs with a CD18-blocking antibody prior to ApxI stimulation significantly reduced the activation of p38 and JNK, and subsequent expression of IL-1β, IL-8 or TNF-α gene, indicating a pivotal role of β2 integrins in the ApxI-mediated effect. Collectively, this study demonstrated ApxI induces gene expression of IL-1β, IL-8 and TNF-α in PAMs that involves β2 integrins and downstream MAPKs.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F: Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res. 2010, 41: 65-10.1051/vetres/2010037.
2. Inzana TJ: Virulence properties of Actinobacillus pleuropneumoniae. Microb Pathog. 1991, 11: 305-316. 10.1016/0882-4010(91)90016-4.
3. Huang H, Potter AA, Campos M, Leighton FA, Willson PJ, Haines DM, Yates WD: Pathogenesis of porcine Actinobacillus pleuropneumoniae, part II: roles of proinflammatory cytokines. Can J Vet Res. 1999, 63: 69-78.
4. Choi C, Kwon D, Min K, Chae C: In-situ hybridization for the detection of inflammatory cytokines (IL-1, TNF-α and IL-6) in pigs naturally infected with Actinobacillus pleuropneumoniae. J Comp Pathol. 1999, 121: 349-356. 10.1053/jcpa.1999.0332.
5. Baarsch MJ, Scamurra RW, Burger K, Foss DL, Maheswaran SK, Murtaugh MP: Inflammatory cytokine expression in swine experimentally infected with Actinobacillus pleuropneumoniae. Infect Immun. 1995, 63: 3587-3594.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献