Back to the future: the novel art of digital auscultation applied in a prospective observational study of critically ill Covid-19 patients

Author:

Kaimakamis EvangelosORCID,Kotoulas Serafeim,Tzimou Myrto,Karachristos Christos,Giannaki Chrysavgi,Kilintzis Vassileios,Stefanopoulos Leandros,Chatzis Evangelos,Beredimas Nikolaos,Rocha Bruno,Pessoa Diogo,Paiva Rui Pedro,Maglaveras Nicos,Bitzani Militsa

Abstract

Abstract Background The Covid-19 pandemic has caused immense pressure on Intensive Care Units (ICU). In patients with severe ARDS due to Covid-19, respiratory mechanics are important for determining the severity of lung damage. Lung auscultation could not be used during the pandemic despite its merit. The main objective of this study was to investigate associations between lung auscultatory sound features and lung mechanical properties, length of stay (LOS) and survival, in adults with severe Covid-19 ARDS. Methods Consecutive patients admitted to a large ICU between 2020 and 2021 (n = 173) were included. Digital stethoscopes obtained auscultatory sounds and stored them in an on-line database for replay and further processing using advanced AI techniques. Correlation and regression analysis explored relationships between digital auscultation findings and lung mechanics or the ICU outcome. The resulting annotated lung sounds database is also publicly available as supplementary material. Results The presence of squawks was associated with the ICU LOS, outcome and 90-day mortality. Other features (age, SOFA score & oxygenation index upon admission, minimum crackle entropy) had significant impact on outcome. Additional features affecting the 90-d survival were age and mean crackle entropy. Multivariate logistic regression showed that survival was affected by age, baseline SOFA, baseline oxygenation index and minimum crackle entropy. Conclusions Respiratory mechanics were associated with various adventitious sounds, whereas the lung sound analytics and the presence of certain adventitious sounds correlated with the ICU outcome and the 90-d survival. Spectral features of crackles sounds can serve as prognostic factors for survival, highlighting the importance of digital auscultation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3