Abstract
Abstract
Background
We performed a systematic review and meta-analysis to evaluate the prognostic significance of 18F-FDG PET and PET/CT for evaluation of responses to neoadjuvant chemotherapy (NAC) in breast cancer patients.
Methods
We searched PubMed, Embase, and the Cochrane Library databases until June 2020 to identify studies that assessed the prognostic value of 18F-FDG PET scans during or after NAC with regard to overall (OS) and disease-free survival (DFS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) were pooled meta-analytically using a random-effects model.
Results
Twenty-one studies consisting of 1630 patients were included in the qualitative synthesis. Twelve studies investigated the use of PET scans for interim response evaluation (during NAC) and 10 studies assessed post-treatment PET evaluation (after NAC). The most widely evaluated parameter distinguishing metabolic responders from poor responders on interim or post-treatment PET scans was %ΔSUVmax, defined as the percent reduction of SUVmax compared to baseline PET, followed by SUVmax and complete metabolic response (CMR). For the 17 studies included in the meta-analysis, the pooled HR of metabolic responses on DFS was 0.21 (95% confidence interval [CI], 0.14–0.32) for interim PET scans and 0.31 (95% CI, 0.21–0.46) for post-treatment PET scans. Regarding the influence of metabolic responses on OS, the pooled HRs for interim and post-treatment PET scans were 0.20 (95% CI, 0.09–0.44) and 0.26 (95% CI, 0.14–0.51), respectively.
Conclusions
The currently available literature suggests that the use of 18F-FDG PET or PET/CT for evaluation of response to NAC provides significant predictive value for disease recurrence and survival in breast cancer patients and might allow risk stratification and guide rational management.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korea government
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Gradishar WJ, Anderson BO, Abraham J, Aft R, Agnese D, Allison KH, Blair SL, Burstein HJ. Breast cancer, version 4.2020, NCCN clinical practice guidelines in oncology; 2020.
2. Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998;16(8):2672–85.
3. Hylton NM, Gatsonis CA, Rosen MA, Lehman CD, Newitt DC, Partridge SC, Bernreuter WK, Pisano ED, Morris EA, Weatherall PT, et al. Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence-free survival-results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology. 2016;279(1):44–55.
4. McGuire KP, Toro-Burguete J, Dang H, Young J, Soran A, Zuley M, Bhargava R, Bonaventura M, Johnson R, Ahrendt G. MRI staging after neoadjuvant chemotherapy for breast cancer: does tumor biology affect accuracy? Ann Surg Oncol. 2011;18(11):3149–54.
5. Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Vrancken Peeters MJ, Gilhuijs KG. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol. 2011;29(6):660–6.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献