Quantitative nuclear histomorphometric features are predictive of Oncotype DX risk categories in ductal carcinoma in situ: preliminary findings

Author:

Li HaojiaORCID,Whitney Jon,Bera Kaustav,Gilmore Hannah,Thorat Mangesh A.,Badve Sunil,Madabhushi Anant

Abstract

Abstract Background Oncotype DX (ODx) is a 12-gene assay assessing the recurrence risk (high, intermediate, and low) of ductal carcinoma in situ (pre-invasive breast cancer), which guides clinicians regarding prescription of radiotherapy. However, ODx is expensive, time-consuming, and tissue-destructive. In addition, the actual prognostic meaning for the intermediate ODx risk category remains unclear. Methods In this work, we evaluated the ability of quantitative nuclear histomorphometric features extracted from hematoxylin and eosin-stained slide images of 62 ductal carcinoma in situ (DCIS) patients to distinguish between the corresponding ODx risk categories. The prognostic value of the identified image signature was further evaluated on an independent validation set of 30 DCIS patients in its ability to distinguish those DCIS patients who progressed to invasive carcinoma versus those who did not. Following nuclear segmentation and feature extraction, feature ranking strategies were employed to identify the most discriminating features between individual ODx risk categories. The selected features were then combined with machine learning classifiers to establish models to predict ODx risk categories. The model performance was evaluated using the average area under the receiver operating characteristic curve (AUC) using cross validation. In addition, an unsupervised clustering approach was also implemented to evaluate the ability of nuclear histomorphometric features to discriminate between the ODx risk categories. Results Features relating to spatial distribution, orientation disorder, and texture of nuclei were identified as most discriminating between the high ODx and the intermediate, low ODx risk categories. Additionally, the AUC of the most discriminating set of features for the different classification tasks was as follows: (1) high vs low ODx (0.68), (2) high vs. intermediate ODx (0.67), (3) intermediate vs. low ODx (0.57), (4) high and intermediate vs. low ODx (0.63), (5) high vs. low and intermediate ODx (0.66). Additionally, the unsupervised clustering resulted in intermediate ODx risk category patients being co-clustered with low ODx patients compared to high ODx. Conclusion Our results appear to suggest that nuclear histomorphometric features can distinguish high from low and intermediate ODx risk category patients. Additionally, our findings suggest that histomorphometric features for intermediate ODx were more similar to low ODx compared to high ODx risk category.

Funder

National Cancer Institute of the National Institutes of Health

DOD Peer Reviewed Cancer Research Program

United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service VA Merit Review Award

DOD Prostate Cancer Idea Development Award

DOD Lung Cancer Investigator-Initiated Translational Research Award

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. Cancer Statistics Review, 1975-2014 - SEER Statistics. SEER. Available from: https://seer.cancer.gov/archive/csr/1975_2014/ . [cited 2019 May 14]

2. Allegra CJ, Aberle DR, Ganschow P, Hahn SM, Lee CN, Millon-Underwood S, Pike MC, Reed SD, Saftlas AF, Scarvalone SA, Schwartz AM, Slomski C, Yothers G, Zon R. NIH state-of-the-science conference statement: diagnosis and management of ductal carcinoma in situ (DCIS). NIH Consens State Sci Statements. 2009;26(2):1–27 PMID: 19784089.

3. Ward EM, DeSantis CE, Lin CC, Kramer JL, Jemal A, Kohler B, Brawley OW, Gansler T. Cancer statistics: breast cancer in situ. CA Cancer J Clin. 2015;65(6):481–95. https://doi.org/10.3322/caac.21321 .

4. Local excision alone without irradiation for ductal carcinoma in situ of the breast: a trial of the Eastern Cooperative Oncology Group. - PubMed - NCBI. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19826126 . [cited 2018 Nov 15]

5. McCormick B, Winter K, Hudis C, Kuerer HM, Rakovitch E, Smith BL, Sneige N, Moughan J, Shah A, Germain I, Hartford AC, Rashtian A, Walker EM, Yuen A, Strom EA, Wilcox JL, Vallow LA, Small W, Pu AT, Kerlin K, White J. RTOG 9804: a prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(7):709–15. https://doi.org/10.1200/JCO.2014.57.9029 PMID: 25605856 PMCID: PMC4334775.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3